
AD-A246 940

NAVAL POSTGRADUATE SCHOOL
Monterey, California

OTICG Dt

l0

ELECTE
SMAR 0 51992U

THESIS
SECURING APPLICATIONS
IN PERSONAL COMPUTERS:

THE RELAY RACE APPROACH

by

James Michael Wright

September, 1991

Thesis Advisor: Moshe Zviran

Approved for public release; distribution is unlimited

92-05297
9 2 3 0 2 o 5 11

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.I.2b. OECLASSIFICATIONIDOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6&. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Poitgraduate School (If applicable) Naval Postgraduate School

55

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Program Element NO Project No 1 ask No Work Unit ActesSIon

Number

11 TITLE (Include Security Classification)

SECURING APPLICATIONS IN PERSONAL, COMPUTERS: TlE RELAY RACE APPROACH

12 PERSONAL AUTHOR(S) Wright, James M.

13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (year, month, day) 15 PAGE COUNT
Master's Thesis From To September 1991 107
16 SUPPLEMENTARY rJOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17 COSATI CODES 18 SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Security, Personal Computer, Applicaion level, Microcomputer.

19 ABSTRACT (continue on reverse if necessary andidentify by block number)

This Thesis reviews the increasing need tbr security in a personal computer tPC) environment and proposes a new approach for becuring PC
applications at the application layer. The Relay Race Approach extends two standard approaches: data encryption and password access control at
the main program level, to the subprogram level by the use of a special parameter, the "Baton." Tht: applicability of this approach is demonstrated
in an original Basic application and an existing DbaseIV applcation, representing both third generation language 31.) and fourth generation
language (4GL) environments. The Approach can add to overall network security in the PC LAN environment as well The Approach is
successful and proposed enhancements can strengthen the Approach.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
1 UNCtASSIFIED/UNLIMI1LD D SAMI ASHEPORI oi U1cusLs Unclassfied

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFIC: SYMBOL
Moshe Zwran 408-646 2489 jAS/ZV

DD FORM 1473,84 MAR 83 APR edition may be used itilI exhaubted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete Unclassified

i

Approved for public release; distribution is unlimited.

Securing Applications in Personal Computers:

The Relay Race Approach

by

James Michael Wright
Lieutenant Commander, United States Navy

B.S., University of Florida, 1980

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SYSTEMS MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 1991
I . /

Author:.. - -- -

James Michael Wright/

Approved by: A 4- -L -
i, n

DvdR. Whippl, Ch'Airman
Department of Administrative Sci ;ce

ABSTRACT

This Thesis reviews the increasing need for security in

a personal computer (PC) environment and proposes a new

approach for securing PC applications at the application

layer. The Relay Race Approach extends two standard

approaches: data encryption and password access control at

the main program level, to the subprogram level by the use

of a special parameter, the "Baton". The applicability of

this approach is demonstrated in an original Basic

application and an existing Dbase IV application,

representing both third generation language (3GL) and fourth

generation language (4GL) environments. The App%:oach can

add to overall network security in the PC LAN environment as

well. The Approach is successful and proposed enhancements

can strengthen the Apptoach.

T I C

copAccesi For...
6CTL0 NTIS CRA&I

DrIC TAB 0
Uja ounced]

Justification

By....

Dit ibutioni

Availability Coles

Avail and/I or

Dist Special

A±_

TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. SECURITY IN PERSONAL COMPUTERS 3

A. HARDWARE ... 5

B. SOFTWARE ... 7

1. Operating System 8

2. Utilities 10

3. Applications 12

C. DATA .. 13

D. PERSONNEL 14

III. THE RELAY RACE APPROACH 15

A. INTRODUCTION 15

1. Application Access Control 15

2. Data File Security 16

3. Intra-application Control 16

B. IMPLEMENTATION CONCEPTS 18

L. Password Storage 18

, 2:.,. Baton and Baton Passing 20

3., Data File Encryption 21

IV. APPLICATION IN A THIRD GENERATION LANGUAGE

ENVIRONMENT .. 22

A. EN.IONMENT DESCRIPTION..........................22

B. APPLICATION DESCRIPTION 22

C. TRANSFORMING CONCEPTS TO CODE 23

1. 'Handling Passwords and the Baton 23

iv

2. Called Subprogram Requirements 29

3. Data Encrypting, Decrypting and Access

Requirements 30

a. Data Encryption Utility 30

b. Data File Manipulation 30

c. System Administration 32

V. APPLICATION IN A FOURTH GENERATION LANGUAGE

ENVIRONMENT .. 34

A. ENVIRONMENT DESCRIPTION 34

B. APPLICATION DESCRIPTION 35

C. TRANSFORMING CONCEPTS TO CODE 37

1. Handling Passwords and the Baton 37

2. Called Subprogram Requirements 39

3. Data Encrypting, Decrypting and

Administration 39

VI. THE RELAY RACE APPROACH AND LOCAL AREA NETWORK

SECURITY ... 41

A. ELEMENTS AND FUNCTIONALITY OF A LAN 41

B. SECURITY IN LANS 41

C. ENHANCING OVERALL LAN SECURITY 42

VII. CONCLUSIONS .. 44

A. THE NEED .. 44

B. REQUIRED ATTRIBUTES 44

C. POSSIBLE ENHANCEMENTS 45

1. Unique Application copies 45

v

2. Deceptive and Dynamic Baton 46

3. Disk File Residue Eliminators.............. 47

APPENDIX A - THIRD GENERATION SOURCE CODE.................. 48

APPENDIX B - FOURTH GENERATION SOURCE CODE................. 54

LIST OF REFERENCES.. 97

BIBLIOGRAPHY.. 98

INITIAL DISTRIBUTION LIST.................................. 100

vi

I INTRODUCTION

The proliferation of information systems in virtually

all areas of business and government has increased the

importance of computer security issues. As more people

become computer literate, the risks of ill-intentioned

individuals obtaining unauthorized access or violating the

integrity and validity of data grow. Potential solutions to

computer security risks are varied and numerous because

different types of computer hardware, operating systems, and

application software have different security strengths and

weaknesses.

Different environments and applications require varying

levels of security and security measures. Some environments

need to target their security measures toward threats of

accidental data corruption while others are primarily

concerned with unauthorized access to sensitive information.

Another computer security issue is system protection from

viruses, worms, trojan horses, etc.

Widespread use of personal computers and growth of end

user computing have introduced myriad security concerns.

Almost every personal computer user is likely to view virus

protection, data backup, floppy disk control, and data

encryption as primary computer security issues (Murray 1989,

Stephenson 1989, Brown 1989). However, many personal

1

computer security concerns for the most part remain largely

unaddressed at this time (Pfleeger, 1989). Moreover, the

glowing population of knowledgeable personal computer users

incre, ses the numerical chances of security breaches

involving personal computers.

This research explores the unique security issues

involving personal computers and proposes a new approach for

securing personal computer applications and data.

2

[I1. SECURITY IN PERSONAL COMPUTERS

The use of personal coputers, including microcomputers,

office automation workstations and intelligent workstations,

has spread substantially in recent years. Since the

7 ;'..roduction of these systems, in the late 1970s, they have

undergonie far reaching changes and improvements which have

brought them almost to the level of performance of large

computers (Giladi and Zviran, 1989). Analysis of the

development and characteristics of personal computers and

large systems shows that the processing speed of present

personal computers is equal or even superior to that of the

main large systems that were in use during the late 1970s

(e.g., IBM 370 series).

The basic security pioblems for personal computers are

the same as those for every other computing environment:

applications require secrecy, integrity and availability

applied to programs and data. However, security problems of

personal computers are more serious than tho!e of mainframes

or mini computers due to the lack of security tools and

mechanisms. Many of the hardware and software facilities

important in assuring security are inappropriate and

unavailable iL the personal computer environment.

The security problem of personal computers is becoming

even more meaningful as these machines are being integrated

3

into computer networks. While many personal computers are

being used in a stand-alone mode, others are being connected

to networks as front-end terminals and processors, becoming

a weak link in the network security chain. This problem

becomes more crucial in the open system interconnection

(OSI) environment. As the goal of an OSI environment is

approached it becomes easier and more economical to connect

computers and share resources. Logically, more PCs will be

integrated into network systems. As a result, national

organizations as well as users are becoming concerned with

the vulnerability of personal computers (NCSC, 1985; NTISSC,

1987; Post and Kievit, 1991).

As the name implies, personal computers were initially

envisioned as being used by one person. Simple physical

security measures would supply the necessary measure of

security. This single user view is evident in the design of

the popular personal computer operating system, MS-DOS. In

most organizations today however, PCs are not personally

allocated (Gogan, 1991). In view of this, more security is

sometimes required. There is a definite l.,ck of tools to

provide security for personal computers.

As the popularity and power of personal computers grows,

more people want and obtained access to them. Personal

computers distribute computing power to virtually all

physical locations within an organization, unlike large

4

machines. For the first time the computing power is not

under the control of computer professionals. Persons

responsible for mainframe or mini-computer security have

linited control over how personal computers were being used

within organizations. Generally, personal computer users

lack the sensitivity toward computer security issues

exhibited by mainframe and mini computer operators. The

personal and organizational computer security mechanisms

evident in large systems are not automatically in place for

personal computers.

A. HARDWARE

The first IBM personal computer was built around the

8088 processor. This processor had no protection scheme.

All memory locations were open and unguarded. There were no

privileged instructions available only to the operating

system or trusted kernel. The newer 80286 and 80386 CPUs

have stronger protection capabilities but the MS-DOS

operating system is not capable of exploiting them (Post,

1991; Pfleeger, 1989).

Common hardware add-on security measures include

physical security measures, security modules, and locks and

keys. Each provides various degrees of security against

certain types of threats while exhibiting weaknesses against

others.

5

Locking doors to rooms containing computers is effective

but in most cases not feasible. Too often it is necessary

to allow open access to a room containing the computer.

Disconnecting and locking the computer's keyboard in a desk

drawer or cabinet provides good security without limiting

access to an office space. Unfortunately, physical security

measures limit access to all of the computer's programs, not

just the sensitive ones. This weakness can lead to under-

use of computer assets.

Security modules are expansion boards which plug into

industry standard slots on personal computer motherboards to

provide security. They usually perform in concert with

software utilities. Security modules usually prevent

booting from other than the fixed hard disk drive. This

ensures that access control software stored on the fixed

disk is run upon boot-up. Because the modules must plug

into standard slots for compatibility reasons it would be

easy for an intruder to locate and remove them. Many casual

personal computer users possess sufficient knowledge to

quickly open a computer's case, identify specific expansion

boards and remove the security module (Stephenson, 1989;

Zarger, 1988).

Key type locks coupled to power switches are often used

in personal computers as security measures. These locks are

an "all or nothing" device. Those who have a key have

6

access to all programs and data and those who do not have a

key have access to nothing. They cannot provide universal

access to public applications and provide security for

private programs and data. Additionally, locking power

switches can be defeated quite easily if the computer is

housed in a standard case. Once the standard "easy access"

case is opened, it is a simple matter to "hot wire" the

switch to defeat the lock.

Hardware security solutions are enhanced when cases and

fasteners are used which are non-standard and require

special tools cr keys for access or removal. Additionally,

epoxy coatings are useful in protecting hardware items from

tampering measures such as hot wiring switches. As with

most security issues, using optimum combinations of security

measures greatly enhances personal computer security

effectiveness.

B. SOFTWARE

Any computer system has, usually, two different types of

software: an operating system and application programs. The

operating system consists of the system programs, command

interpreter, and utilities. The operating system is the

focal point for exploring security issues. Application

programs are those which accomplish processing desired by

7

the computer user. Application programs make calls to, or

use, the operating system to accomplish lower level tasks.

1. Operating Systems

The operating system is the inner-most software

layer of a computer system according to the "virtual

machine" model (Tanenbaum, 1990). It accomplishes tasks for

users and/or the application programs and shields them from

complex hardware details. Transparent to users and

applications, the function of the operating system is to

present the user with the equivalent of an extended machine

or virtual machine that is easier to program thz.n the

underlying hardware. Its primary task is to keep track of

resource usage, to grant resource requests and account for

their usage, and to mediate conflicting requests from

different programs and users (Tanenbaum, 1987).

At their advent, personal computers were initially

equipped with 4 KB of main memory. The operating system had

to be small enc-:gh to be loaded into this small memory space

and still leave room for an application program to run. The

early developers of personal computers and their operating

systems did not expect these machines to grow in popularity

as they have. The operating system was written to provide

compactness and functionality in a "personal" environment.

This meant one user, one program at a time. Under MS-DOS,

anyone with basic knowledge can access and/or change any

8

file or memory location. The current trend is toward

personal computer power houses shared by several workers

able to run several applications simultaneously utilizing up

to 8 MB of main memory. With multiple users instead of the

envisioned personal use, MS-DOS does not provide any measure

of security. In examining MS-DOS it is clear that it has

limitations which cripple its capability to grow into a

full-fledged operating system capable of supporting and

managing systems which are now in demand.

MS-DOS's major limitation is that when conceived, it

allotted only enough bits in its address format to access a

maximum of 640 kilobytes of main memory directly. This

limit remains in place today because of market pressures for

downward compatibility. The most powerful applications

programs tend to use most of the 640 kb of memory leaving

only enough for the underlying operating system. To install

security mechanisms in MS-DOS would undoubtedly reduce the

memory space available for use by application programs to an

even lower value. It seems that the marxet pressure for

freeing up memory for applications is far greater than any

pressure to add security functions to MS-DOS.

Although most operating systems for large systems

provide adequate security functions, MS-DOS continues to

serve as the personal computer standard with virtually no

security capability. Market pressure for compatibility and

9

maximum application space will defeat any move to retrofit

MS-DOS with security functionality.

2. Utilities

Utilities are separate system programs that

accomplish tasks for users. Their normal function is system

management. Since they are optional, commercial software

programs are not written to use them. Utility programs are

very important in security of personal computer systems.

Because the operating system has no security capability,

personal computer users often use utility programs to

protect their data and programs. There are several

different ways in which utility programs are commonly used

for security in the personal computer environment. These

include encryption of data, password hard disk drive locks

with or without hardware locks, and disk residue

eliminators. The best commercially available solutions

include elements of all three (Stephenson, 1989).

Encryption of data using utility programs provides

excellent security of data. The application program can be

run by intruders but the data they receive will be nonsense

unless first decrypted. Encryption and decryption can be

accomplished automatically using batch command files. There

are two limitations which come to mind in using data

encryption utilities. Data file encryption and decryption

are disk intensive activities and consequently are very

10

slow. Additionally, simply securing the data does not keep

intruders from running the application program. It simply

keeps the intruder from understanding the data. In some

cases it may be desirable to ensure intruders are unable to

run the application program at all.

Password hard disk drive boot locks are programs

which require password authentication to boot and

subsequently access the hard drive. They are fast, compact

and work well against casual, novice intrusion attempts.

Without hardware enhancements, however, they can be bypassed

if the intruder boots the computer from a bootable MS-DOS

floppy (Stephenson, 1989).

Additionally, access to even non-sensitive programs

on the protected system requires password authentication.

This limits the use of computer resourcos to trusted

password holders only. In many cases it is desirable to

secure only a portion of the functions the personal computer

helps perform.

Other utilities rid secondary memory of residue.

When files on personal computers are deleted their data

remains. The operating system simply deletes the file from

the directory, rendering it unlocatable. Intruders can read

or copy portions of the memory media in search of sensitive

data. Simply deleting files does not protect the

information. Utilities such as Norton's wipe disk and wipe

11

file rewrite the disk or file entirely with meaningless

data. This destroys all residue left from sensitive files.

These types of utilities are often bundled with

hardware which disallows booting from any disk except the

one protected by the software.

3. Applications

Application programs are the outer layer of software

in the virtual machine model. The application software is a

program which interfaces with the user and ensures that the

tasks the user wishes to accomplish are completed. The

application program makes calls to the operating system to

accomplish low level tasks in order for the application to

accomplish tasks initiated by the user. The application

software is shielded from hardware details by the operating

system.

The operating system, MS-DOS, provides no security

capability and utilities leave possible back doors and

require password access procedures for all applications. If

application programs provide their own security capability

only programs which require security would require passwords

for access. Moreover, common back doors associated with

security utility programs are closed to intruders when

application programs contain protection schemes.

Application programs that need no protection are not limited

by running under a larger, hypothetical, security-capable

12

operating system which would use more of the 640 kb main

memory than the unprotected MS-DOS. A minor drawback to

applications providing their own protection is that the

consequential increase in program size occurs in each

secured *plication program. This is a minor drawback as

the additional required disk storage space would small. The

additional RAM would be required only by programs needing

protection, thereby freeing maximum main memory for larger

unprotected programs.

C. DATA

Two views of data security prevail: protection against

inadvertent data loss and protection of unauthorized access

to sensitive data. Inadvertent data loss is a problem of

valuable, but not necessarily sensitive, data (Mensching and

Adams, 1991). Procedures for precluding inadvertent data

loss have been common knowledge since the personal

computer's inception and will not be addressed here. Since

the operating system as described previously provides no

built-in file protection measures, data file encryption must

be used to secure data in personal computers.

Utilities are commonly used to encrypt and decrypt data

files to ensure protection of sensitive data. Some hardware

add-on boards also possess the capability to automatically

encrypt and decrypt data files. There are many different

13

algorithms to encrypt and decrypt data. Some of which are

considered to be safer than others. The Data Encryption

Standard (DES) is the most common one, initially developed

for the U.S. government for use by the general public.

D. PERSONNEL

Sensitivity to security issues and an attitude of

responsibility on the part of all users in a personal

computer environment are necessary for other measures to

succeed in providing security. Whereas mainframes and other

large systems have separate locked rooms and expert

operators shielding them, personal computers are vulnerably

distributed throughout an organization. For instance, no

security system can succeed if a user leaves the area while

a sensitive application is running. No matter how strong

the security system, it is useless unless personnel have a

healthy attitude toward security and are sensitive to

possible threats (Pfleeger, 1989).

14

III. THE RELAY RACE APPROACH

A. INTRODUCTION

In view of the personal computer operating system's

inability to provide security and the limitations associated

with security modules and utilities, it becomes worthwhile

to explore new techniques for securing individual

application programs. Three major threats to the security

of an application can be countered, to include unauthorized

execution of the main program, data disclosure and

unauthorized execution of parts of the program by executing

subprograms directly. Traditional methods cover encryption

of data files and securing main programs, while the Relay

Race Approach extends protection to the subprogram level.

1. Application Access Control

Personal computers are often used by different

individuals running different application programs (Gogan,

1991). In most cases, all applications are stored on the

same hard disk drive. Allowing access to certain programs

by certain individuals while limiting access to valid users

of other protected programs stored on the same disk is no

trivial task in the PC environment. Since the MS-DOS

operating system provides no security kernel, the solutions

must be coded into the application programs. Each

application program must check for access authorization and

15

take required measures to secure itself against intrusion.

This is usually accomplished by an application-oriented

Password checking scheme which protects the application at

the main menu level.

2. Data File Security

Intrusion is usually for the purpose of achieving

access to the system data. One intrusion technique is to

bypass the application programs entirely and attempt to gain

access to the system data files directly. An intruder could

simply browse the file or copy it for later examination at

another computer. To overcome this problem, data files must

be encrypted.

3. Intra-application Controls

The growth in application software capabilities and

the conseqrint growth in size has dictated that applications

be designed as a collection of programs. In such a scheme,

a main program calls on subprograms to accomplish specific

tasks in support of the system. The main program can be

secured with a password-checking scheme to prevent its

unauthorized execution. However, access to functions and

data can sometimes be achieved by executing subprograms

directly without the main program, as depicted in Figure

3.1. To preclude this type of intrusion some method of

ensuring that all subprograms are called by their proper

calling programs or subprograms must be devised. The

16

assword Protection Sphere

I Isw SuI.o _

Intruder porrA.x
Decrint ' ,Oa FlesData Encryption Protection Sphere

1Display P',ird.Li :

- I -Data FilesF Re-encrypt b:ati, Szoit~
I i -,0

Figure 3. 1: Pas-.- r)W t -(I Encryption
Spht ' s of Pi-ocetion

17

approach explored in this research will be called the relay

race approach.

B. IMPLEMENTATION CONCEPTS

In order to counter the three threats three methods of

protection are implemented in The Relay Race Approach. The

first two measures are commonly used in the personal

computer environment in an attempt to secure applications.

One is basic password checking upon execution ensures user

authorization, and the second employs automatic data

encryption, decryption and deletion preclude theft of raw

data files. However, to preclude program execution via an

unprotected subprogram, all subprograms will check for a

parameter which can only be valid if the subprogram was

called via the main program as illustrated in Figure 3.2.

This is a unique measure applied to individual application

programs and it is from this third measure that the approach

receives its name. In much the same way relay racers must

pass a baton or be disqualified, subprograms must receive a

certain parameter and pass it to subsequent subprograms or

the program execution will be halted by the security system.

1. Password Storage and Management

There are two methods of storing valid passwords to

be used by the system to authenticate users: including valid

passwords in program source code and storing valid passwords

18

Passw~ord Protection
Sphere extended
to Subprograms Mi~x
by Relay Race Mi~x

ApproaApproacoO

19W

in encrypted data files. Including passwords in source code

provides simplicity and security but requires recompilation

for each password change. Using encrypted data files

k containing valid passwords precludes requirement for source

code dissemination to user/ administrator but requires

thoughtful implementation to ensure security. An intruder

could encrypt his/her own password file with a different key

and replace the real password file with his/her version

(same filename). In order to defeat this intrusion scheme

the system must check to determine whether the password file

is real or one planted by an intruder. The valid password

file will contain a password to be checked against one in

the compiled code. The intruder's file would not work if it

did not contain this file checking password. A combination

of both encrypted data file and compiled password ensures

security and precludes source code dissemination and

recompilation for routine password changes.

2. Baton and Baton Passing

In order to ensure that subprograms are executed

only when called by proper calling programs a global

variable, or parameter, can be set upon password

authentication and passed from the main program to the

called subprograms. Subprograms can, in turn, pass the same

parameter to any subprograms they call. Each subprogram can

begin execution by checking this parameter before executing

20

further and halt processing if the parameter is invalid.

This is analogous to a relay race at a track meet. Without

the baton being properly passed and received the relay team

cannot complete the race.

3. Data File Encryption

Two types of encrypted data files are required for

the relay race baton scheme: password file and data storage

files. The password file is decrypted, and the decrypted

file is then read and deleted. The decryption process

leaves the encrypted file intact so that when the system

deletes the decrypted files, the original encrypted password

file remains for use in future access attempts. Data

storage files must be decrypted for reading and recrypted if

new data is added or other changes are made. Once again all

files decrypted during a process need to have the decrypted

copy deleted as soon as possible after they are re-

encrypted.

21

IV. APPLICATION IN A THIRD GENERATION LANGUAGE ENVIRONMENT

A. ENVIRONMENT DESCRIPTION

A simple test application was developed in compiled MS-

BASIC. BASIC was chosen as the third generation language

for a prototype due to its relatively low power and

programmers' wide exposure to it. If the relay race scheme

can be implemented in BASIC, it is reasonable to assume that

it is possible to implement it in any of the known third

generation languages.

B. APPLICATION DESCRIPTION

The prototype application is a simple, menu-driven,

maritime minefield planning program designed to minimize the

necessity for accurate small scale plotting on geographic

charts. The program has options to input planning data,

calculate mine drop instructions, save instructions to disk,

and print instructions. The application programs and data

are protected using The Relay Race Approach.

The MS-DOS directory presentation for the application is

provided in Figure 4.1. BASRUN20.EXE is a runtime package

required for applications compiled separately such as the

minefield planning application. MFPLAN.EXE is the main

program containing password checking code and opening menu.

The remaining .EXE files are subprograats which accomplish

22

the application's tasks. $ED.MNQ and $ED.NMQ are encrypted

data and password files respectively.

$ED MNQ 560 5-19-91 9:24p
$ED NMQ 128 2-10-91 6:57p
BASRUN20 EXE 63046 6-25-85 4:42p
MFPLAN EXE 3415 5-19-91 7:55p
MINECALC EXE 4615 5-19-91 7:56p
MINEPRNT EXE 2503 5-19-91 7:57p
MINESAVE EXE 2887 5-19-91 7:56p
MLRETREV EXE 2279 5-19-91 7:57p

Figure 4.1: MS-DOS Directory presentation of
the application

The threat of intrusion via subprogram defeating the

password authorization and data encryption without baton

passing is illustrated in a structure chart of an intrusion

attempt (Figure 4.2). When unprotected, an intruder needs

only to write a small BASIC program to call MLRETREV.EXE and

MINEPRNT.EXE in order to gain access to the system's

sensitive data. By combining password checking, data

encryption and the Relay Race Approach, this intrusion is

thwarted (Figure 4.3).

C. TRANSFORMING CONCEPTS TO CODE

1. Handling Passwords and the Baton

The first operation the scheme must accomplish is

password checking. This operation is be accomplished as

early as possible in the application. Figure 4.4 contains

23

V,

hitruder.exe

Call Mlretrevxev
then call Mineprnt.cxe

Mlretrev.exe Minepmt.exe
Retrieves data Prints results

from file

Figure 4.2: Structure chart illustrating
how an itruder's program could call

subprograms and achieve data
access.

24

Mfplan.exe
Password check

and Menu / control id l
Program Png ProHer

05
Mirtecalcxxe Minepmiit.exe MIretrev~ex Minesave.exe
Takes user input,, Print.% results Retrieves data Appends output to

outputs__ _ _ _ _ _ _ _ ______ ___

Data i e
SED .MNQ

Figure 4.3: Structure chart ol Minc -
field Planning Program

25

the required BASIC source code to handle passwords and

password checking and initialize the security baton. Line 9

allows the program to be recalled from subprograms without

requesting a password each time the main menu appears.

Lines 40, 50 and 60 blank the display screen for password

entry, input password and return normal function to the

[i display screen. Line 70 creates a decrypted copy of the

valid password file and names it "PWORD.DAT". During the

execution of the "RCRYPT" program, the user will be prompted

to enter an encryptation key twice. Line 80 opens the

PWORD.DAT file for input. Lines 90, 100, 110 initialize

several variables to be used: N, a loop counter; FOUND$, a

flag indicating wether a password is found to be valid or

not; and BATON$, the global variable or parameter passed to

subprograms to verify that access authorization has been

checked prior to subprogram execition. If the password file

is found to be empty, line 120 will call the violation

routine, (lines 220-290). Lines 140 and 150 input and check

the first entry in the password file and ensure it is

"scud". This defeats intruders who might plant their own

encrypted password file in place of the original. If an

imposter password file is detected the violation routine is

run. Lines 160-200 are the password checking loop where the

input password (PASSWORD$) is checked against each valid

password in the file (VALIDPWORD$(N)). If end of file (EOF)

26

is reached without a match the violation routine is run. If

a match is found, lines 300-320 are run in order to close

the password file, delete it anr set the security baton

(BATON$) valid. This allows subprograms to be called and

run. The violation routine (lines 220-290) also closes and

deletes the password file. Lines 240-260 provide a pause

situation allowing displayed text message to be read by

users before continuing program execution. Lines 350 to 450

represent location of functioning non-security related

application code.

27

9 IF BATON$ = "VALID" then GOTO 330
10 LOCATE 13,10
20 PRINT "Enter your password and press ENTER."
30 LOCATE 15,15
40 COLOR 0
50 INPUT PASSWORD$
60 COLOR 7
70 SHELL "RECRYPT $ED.NMQ PWORD.DAT"
80 OPEN "PWORD.DAT" for INPUT as #1
90N -0
100 FOUND$ - "F"
110 BATON$ = "INVALID"
120 IF EOF(1) GOTO 220
140 INPUT# 1, FILECHK$
150 IF FILECHK$ - "scud" then GOTO 160 else GOTO 220
160 IF EOF(1) GOTO 220
170 N - N + 1
180 INPUT#I, VALIDPWORD$(N)
190 IF PASSWORD$ = VALIDPWORD$ (N) THEN FOUND$ = "T"
200 IF FOUND$ = "T" then GOTO 300 else GOTO 160
210 LOCATE 17,10
220 PRINT "Security Violation!"
230 LOCATE 19,10
240 PRINT "Press any key to continue."
250 A$ = INKEY$
260 IF A$ - "" then 250
270 CLOSE 1
280 KILL "PWORD.DAT"
290 GOTO 500
300 CLOSE 1
310 KILL "PWORD.DAT"
320 BATON$ = "VALID"
330 (M I N E F I E L D
400 P R 0 G R A M
450 B 0 D Y)
500 END

Figure 4.4: Code required to check user's password
and set "baton" variable

28

2. Called Subprogram Requirements

Subprograms require very little additional code to

accomplish the relay race scheme. As the baton is passed by

the COMMON mechanism (sharing variables and values among

programs), a simple check of the security baton (BATONS)

must be made before each program execution. If the value

passed by this variable is valid, execution continues. If

the value passed by this variable is found to be invalid, it

means that the subprogram was called without valid password

authentication. A violation routine is run and the program

is aborted. Required source code for subprograms is

presented in F~jure 4.5.

3 OPTION BASE 1
4 DIM YTD(10),TTD(10)
5 COMMON BATON$,NA$,LAH$, IPLAD, IPLAM, IPLAS, LOH$,
IPLODIPLOMIPLOSSPDTRK,N,YTD() ,TTD()

20 IF BATON$ = "VALID" GOTO 30 ELSE GOTO 60

30 (P R 0 G R A M
40
50 B O D Y)
60 LOCATE 17,10
70 PRINT "Security Violation!"
80 LOCATE 19,10
90 PRINT "Press any key to continue."
100 A$ = INKEY$
110 IF A$ = "" then 110
120 END

Figure 4.5: Code required in subprograms

29

3. Data Encryption, Decryption and Access Requirements

a. Data Encryption Utility

The encryption program used in this prototype

is RCRYPT.COM, an MS-DOS utility. Many different data

encryption utilities are available and most will work within

this scheme. The application may need to be modified

slightly depending on whether the encryption utility

requires the key to be entered on the command line as a

parameter or prompts the user for the key during execution.

The RCRYPT.COM utility in the prototype prompts for the key

during execution.

b. Data File Manipulation

This prototype ues one password file and one

data file. A flat file of records is used because data for

this application is small and response time is not a

critical issue. AS shown in Figure 4.6 most of the data

manipulations focus on decrypting and reading data. One

subprogram (MINESAVE) allows for appending data to the data

file. This case requires decrypting the data file,

appending new data to the file and re-encrypting the file.

The source code required for this operation is presented in

Figure 4.7.

30

MFPLAN (main program)
- decrypts password file
- reads password file
- deletes password file

MINECALC MINEPRNT
- no data file - no data file

operations operations

MLRETREV MINE SAVE
- decrypts data - decrypts data
- reads data - appends data
- deletes file - encrypts data

- deletes file

Figure 4.6: Description of data file manipulations
for each of the programs in the Basic

prototype application.

40 PRINT "What name would you like to call the data?"
50 INPUT NA$
60 SHELL "RCRYPT $ED.MNQ MINE.DAT"
70 OPEN "MINE.DAT" for APPEND as #2
80 WRITE #2,NA$,LAH$,IPLADIPLAM,IPLASLOH$,IPLOD,

IPLOM, IPLOS, SPD, TRK, N
90 FOR B = 1 to N
100 WRITE #2,YTD(B),TTD(B)
110 NEXT B
120 CLOSE #2
130 SHELL "RCRYPT MINE.DAT $ED.MNQ"
140 KILL "MINE.DAT"

Figure 4.7: Code required for data file manipulation
in MINESAVE subprogram

31

c. System Administration

The application requires a system administrator

to accomplish certain tasks. These tasks include steps to

start the system, accomplishing data file housekeeping and

changing passwords. Since it is not desirable to supply

source code to all users, the application deliverables

should include information indicating what the first entry

in the password file needs to be. This entry should be

unique or nearly unique among different copies of the

application to preclude one systems administrator from

intruding into another's copy. For example, line 150 Figure

4.4 character string "scud" (FILECHK$) should be identified

as the required first entry in the password file and should

be different for each copy of the application. To start the

system the administrator should add his/her desired

passwords, nine at most, to the required first entry,

encrypt the file with the desired case sensitive key and the

name "$ED.NMQ" and delete the un-encrypted copy of the

password file.

The application should also include a data file

with one set of test data included to preclude the system

from attempting to decrypt and append to an empty file. A

copy of this original data file should be maintained by the

administrator and used for data housekeeping operations.

The data file, like the password file, needs to be encrypted

32

and named in accordance with lines 130 and 70 of Figures 4.7

and 4.4 respectively.

Changing the passwords should be done regularly

in any system and should be easy to accomplish so as not to

discourage changes when needed. To change passwords, run

RCRYPT.COM directly on the $ED.NMQ file and edit the file

with new passwords. The required first entry of the file

should not be changed or the system will reject the new

password file as bogus. Re-encryption of the password file

using a new encryption key is needed. Changing the k y each

time passwords are changed maximizes security.

33

V. APPLICATION IN A FOURTH GENERATION LANGUAGE ENVIRONMENT

A. ENVIRONMENT DESCRIPTION

The Relay Race Approach was installed into a previously

implemented DBaseIV database application. DBase was chosen

because of its widespread familiarity and its non-procedural

nature. If the approach could be easily grafted into an

existing DBase IV generated application, it would be an

effective approach for securing other existing applications.

Fourth generation languages are often used in

environments where end users build applications. Security

may not be considered when users create applications. The

Relay Race Approach shows promise as an efficient security

measure for these existing end user applications.

The DbaseIV application generator allows users or

developers to create fully functional menu driven database

applications with little or no coding. Database structures,

forms, reports and queries are created using user friendly

graphical interfaces and then are combined to work together

by the application generator. The application generator

generates source code with comments which is compiled into

object code that can be run either in the DBase IV

environment or with a run-time module.

34

B. APPLICATION DESCRIPTION

The application is the user version of an automated dive

log. It is used for users to enter SCUBA diving events, and

query reports such as logs or qualification reports from the

database. There is another version which accesses the same

database which is used by the system administrator for

marketing and other business and organizational functions.

The application accesses four database files: DIVER.DBF,

SITE.DBF, DIVE.DBF and QUAL.DBF. It uses one data entry

form file, DIVEFORM.SCR. Two query (.QBE) files were

slightly modified for use: JOIN1.PRG and QUALLIST.PRG. Two

report files were built and used: LOGREPO.FRM and

QUALRPT.FRM. Finally, the application generator created two

program files: DLUSER.PRG and USERBAR.PRG.

Since the Relay Race Approach depends on passing

parameters between programs, the structure of the

application must be understood before the approach can be

installed into an existing application. Since the source

code was 95 percent generated by DbaseIV the application

must be reverse engineered, yielding a structure chart

needed for understanding. Figure 5.1 is the structure chart

for the application. Only JOINl.PRG and QUALLIST.PRG can

access the data, so only procedures which can possibly call

them need to have the additional source code installed.

35

C.-I

PsPoe

titt

p- I

P.-I

Figure 5. 1: Structure Chart of Dive Log
Application

36

These are DLUSER and MPDEF in DLUSER.PRG file, ACT03, ACT04

in USERBAR.PRG file, and JOIN1.PRG and QUALLIST.PRG files.

C. TRANSFORMING CONCEPTS TO CODE

1. Handling Passwords and the Baton

Checking password validity is accomplished first and

the code required for this was inserted into the main

program, DLUSER.PRG. Figure 5.2 shows the additional source

code inserted at the very beginning of the DLUSER.PRG file.

The set color commands ensure that the password is not

echoed to the screen when the user types their's. In order

to get the prompt "Enter Password" on the screen and not the

password itself, the prompt and the acceptance of the value

for variable "PWORD" had to be separated by the set color

command. This is why the ACCEPT string is a space. Set

color is used again to return the screen to normal. Since

most Dbase IV users will have the capability to compile

programs, the passwords were compiled rather than stor- in

an encrypted file. The logic in the IF / ELSE clause is

such that if no password is entered, and the error message

which occurs is "ignored" by the user, the program

VIOLATIO.PRG will be run, not the rest of DLUSER.PRG. Dbase

defaults to the first statement when an error is encountered

in an IF/ELSE clause and the user selects "IGNORE" at the

error prompt. VIOLATIO.PRG displays a violation message and

37

terminates the program. If the password is found to be

valid the data files are decrypted. Since the baton in

DBase can be a true parameter instead of a shared variable

as was the case in BASIC, a variable does not need to be

set. When a procedure is called it simply needs to be

called with a value which will be checked by the called

procedure. Figure 5.3 illustrates the correct syntax for

calling programs and procedures with the parameter required.

@3,3 SAY "Enter Password:
SET COLOR OF NORMAL TO B/B
ACCEPT " " TO PWORD
SET COLOR OF NORMAL TO W+/B
IF (.NOT. PWORD-"TIGRIS") .AND. (.NOT. PWORD-"SCUD")

.AND. (.NOT.PWORD="BAGDAD")
DO VIOLATIO

ELSE
RUN PKUNZIP ADLDATA -sIRAQ
** Rest of Program **

Figure 5.2: Code required for password checking in
the main program for the Dive Log application.

** Calling Program or Procedure **
DO MPDEF WITH "GOOD"

** Called Program or Procedure **
PARAMETER BATON
ON ERROR CANCEL
IF .NOT. BATON = "GOOD"

DO VIOLATIO
ELSE

** Rest of Program **

Figure 5.3: Code required for calling subprograms
and procedures with parameters.

38

2. Called Procedures or Subprograms Requirements

Called subprograms or procedures which receive the

security parameter BATON must contain the PARAMETERS

statement as shown in Figure 5.3. It was discovered during

testing that if an intruder attempted to call a subprogram

or procedure directly without the required parameter, Dbase

displays an error message displaying the (IF .NOT. BATON =

"GOOD") line of source code and a prompt "PARAMETER NOT

FOUND". This would give the intruder information required

to successfully call the subprogram or procedure on his next

attempt. The "ON ERROR CANCEL" line terminates program

execution when any error occurs to remedy the situation.

The IF/ELSE clause checks for the security baton and runs

the violation procedure or the rest of the program

accordingly.

3. Data Encryption, Decryption and Administration.

Since the application uses four different data files

the PKZIP/PKUNZIP utility programs were selected for

encryption and decryption of data files. It allows for

compression and encryption of multiple files into one single

file. As depicted in Figure 5.2 the encryption key "IRAQ"

is compiled into the program instead of being prompted from

and entered by the user.

The procedure ACT05 in the USERBAR.PRG file, (Figure

5.1), is executed to exit the system. Data encryption and

39

residue housekeeping is accomplished here. The required

code is shown in Figure 5.4

RUN PKZIP ADLDATA -m -SIRAQ *.DBF

Figure 5.4: Code required for encrypting data files
and removing the decrypted data files.

The system administrator has only to periodically

recompile the source code changing passwords and encryption

keys. Access to the source code should be limited to

trusted personnel only as it contains information which

would greatly simplify intrusion.

40

VI. TE RELAY RACE APPROACH AND LOCAL AREA NETWORK SECURITY

The explosion of personal computers in the workplace has

led to the need for data communication and asset sharing

among an organization's Pcs. Local area networks (LANs)

efficiently provide these attributes and are being utilized

extensively today.

A. ELEMENTS AND FUNCTIONALITY OF LANS

LAN implementation includes installing LAN hardware

expansion cards in the computers which are to be linked,

linking the computers together using a cabling system, and

installing a LAN operating system on the machines. One of

the machines is designated as the server and the rest are

clients. The full operating system resides on the server

while only a shell or subset resides on each client. In

popular PC LANs the network operating system still utilizes

MS-DOS but provides added network functions.

Communication between machines or nodes in a network

involves multiple communication protocols. Each protocol

level uses functions provided at lower levels by lower level

protocols.

B. SECURITY IN LANS

Most LAN operating systems provide security functions

capable of multi-level security of files and physical

41

devices. These measures combined with certain physical

security measures involving the network server can protect

assets against casual intrusion attempts. However, if

physical access to the network server can be gained an

intruder could attempt to load a different copy of the

network operating system onto the server and give himself

access to protected files and/or devices. Many LANs place

printers and other periphrials along side the server and the

server therefore cannot be physically isolated from the

users ox public.

C. ENHANCING OVERALL LAN SECURITY

Even though network operating systems oftem provide

security features, the Relay Race Approach can significantly

strengthen overall security. The Relay Race Approach

provides efficient security at the application layer

complementing security features implemented at the LAN

operating system layer. For example, if an intruder were

capable of accessing the LAN server, load a different copy

of the LAN operating system and attempt to access a

protected application, additional security provided by the

Relay Race Approach would significantly hamper his attempts.

The additional layer of security would most likely end the

intruder's attempt: at least for that session.

Additionally, combining security measures implemented at the

42

LAN operating system layer with those at the application

layer can reduce requirements for "armor plated" physical

security measures such as heavy duty locks, doors or

cabinets for the network server.

Both prototype applications were installed on a LAN.

Both executed as expected and illustrated feasibility of the

Relay Race Approach as a security measure for applications

running on LANs.

43

VII. CONCLUSIONS

Personal computer security is an issue of increasing

importance to computer professionals. It is valuable to

explore efficient methods of providing or enhancing PC

security. The Relay Race Approach provides or enhances

security in the PC environment efficiently. The Approach

can be strengthened using deceptive measures to thwart

intrusions by all but those thoroughly familiar with the

application source code.

A. THE NEED

The increased need for PC security is evident in view of

several recent trends. First, PCs are being used in an

increasing number of different business areas. These

include those areas where sensitive processing is common.

Secondly, more persons are becoming familiar enough with

PC's and MS-DOS to be considered capable of casual intrusion

into marginally protected PC environments. Finally, the

increase in public sensitivity to privacy of information

issues dictates the need for increased security in areas

once thought to be of a non-sensitive nature.

B. REQUIRED ATTRIBUTES

For these reasons an approach with the following

attributes would be of significant value. It should be

44

compact, as application program size is of great concern in

the PC environment. The approach should be flexible or

multi-leveled, that is, it should allow public access to

some applications and limit access to other application(s)

to only their specified set of authorized users. The

approach should be easy to implement, even in existing

applications. Increasing end-user application development

makes this a valuable attribute. The Relay Race Approach

exhibits these desired attributes and is strong enough to

withstand casual attacks from intruders with strong

knowledge of MS-DOS and PCs.

C. POSSIBLE ZNANCENTS

The relay approach depends on the premise that an

intruder does not have access to the application source code

and knowledge of how the approach was implemented in the

application. There are two modifications which could

enhance security just in case knowledge of the approach

and/or application source code is compromised: unique

application copies and deceptive and dynamic baton

variables. Additionally, disk file residue eliminators

could strengthen security.

1. Unique Applicstion Copies

First, it would be important to make different

copies of the application utilize unique or nearly unique

45

password files. This would be accomplished by compiling

many versions of the program, each using a different first

entry in the password file (the password file check

variable). This would defeat an intruder who might have one

copy of the application and attempt to insert his password

file into another system and using it to gain access to the

other system's data.

2. Deceptive and Dynamic Batons

To further help deceive intruders who might gain

access to the program source code, the "baton" may be

concealed. Suppose in the Basic application the baton

variable were "MINEDIST#" instead of "BATON" and was of type

integer, Figure 4.4. This would slow a potential intruder's

conceptualization as he browses the source code in search of

security hints. Additionally, dynamic batons can be

employed. Such a baton variable can be set to valid

indirectly through one or more intermediate variables which

might appear to be accomplishing some arithmetic operations.

The value given to the baton variable may also change often

but retain some characteristic for the validity check. For

instance, the baton could change value but retain even

divisibility by 17 and the validity check would be designed

to test for that.

46

3. Disk File Residue Eliminators

Finally, using a filewipe type residue eliminating

program instead of simple MS-DOS delete command in the

application would provide an extra degree of security to

counter random disk sector searches.

The Relay Race Approach provides efficient, casual

security for personal computer applications in today's

environment of increasing PC security Threats.

47

Appendix A: Source code for Minefield Planning
Application in BASIC.

1 'MFPLAN.BAS - Prototype 2 4.21-91 of Relay Race Baton PC security system.
3 OPTION BASE 1
4 DIM YTD(IO),TTD(10)
5 COMMON
BATON$,NA$,LAH$,IPLAD,IPLAM ,IPLAS,LOH$,IPLOD,IPLOM, IPLOS,SPD,TR K,N,YTD ,TTDO

7IM VALIDPW$(10)
8CLS
9 IF BATON$-"VALID" THEN GOTO 140
18 LOCATE 13,10
20 PRINT "Enter your password and press ENTER."
21 LOCATE 15,15
22' ****BLACKEN SCREEN TO HIDE PASSWORD AS IT IS ENTERED &
GET PASSWORD
23 COLOR 0
24 INPUT PASSWORD$
25' ****RESET
SCREEN
26 COLOR 7
27 SHELL "RCRYPT $ED.NMQ PWORD.DAT"' ****DECODE FILE OF VALID
PASSWORDS AND CHECK USER'S FOR VALIDITY
28 OPEN "PWORD. DAT" FOR INPUT AS #1
30 N-O:FOUND$-"F": BATON$-INVALID"
32 N-N+1
34 IF EOF(1) GOTO 50
36 INPUT# 1, VALIDPW$(N)
38 IF PASSWORD$-VALIDPW$(N) THEN FOUND$="T"
40 IF FOUND$-"T" THEN GOTO 60 ELSE GOTO 32
50 IF FOUND$-"F" THEN CLS:LOCATE 17,10:PRINT "Your password is invalid,
access denied."
51' ****PAUSE TO
READ MESSAGE
52 LOCATE 19,10:PRINT "Press any key to continue."
54 A$-INKEY$:IF A$ -"" THEN 54
56 CLOSE 1:KILL"PWORD.DA"' ****CLOSE PASSWORD FILE & ERASE IT
58 GOTO 240 ' ****STOP
60 CLOSE 1: KILL "PWORD.DA.
62 BATON$-"VALID":' ****BUILD BATON
80 CLS
90 LOCATE 5,5:PRINT "Welcome to Minefield Planning., A simple Basic program to"
100 LOCATE 6,5:PRINT "assist in planning air deployed minefields. Given IP lat"
110 LOCATE 7,5:PRINT "and long, hole lat & long's, track, speed and trajectory"
120 LOCATE 8,5:PRINT "the program will calculate and securely store and/or"
130 LOCATE 9,5:PRINT "print time to drop and distance to drop."
140 LOCATE 11,10:PRINT "MAIN MENU"
150 LOCATE 13,5:PRINT "1 - Enter new data and calculate drops"
155 LOCAI E 14,5: PRINT "2- Retrieve previously stored solution from disk"

48

160 LOCATE 15,5:PRINT "3 - Print data from earlier calculated or retrieved line"
165 LOCATE 16,5: PRINT "4.- Save current mineline calculations to disk"
170 LOCATE 17,5:PRINT "5.- EXIT SYSTEM"
180 LOCATE 19,10: PRINT "Enter your choice"
190 INPUT CH$
200 IF CH$-"1" THEN CHAIN "MINECALC" ELSE IF CH$-"2* THEN CHAIN
"MLRETREV" ELSE IF CH$-"3" THEN CHAIN "MINEPRNT" ELSE IF CH$-"4" THEN
CHAIN "MINESAVE" ELSE IF CH$-"5" THEN GOTO 240
210 OLS
220 LOCATE 10,10: PRINT "ERROR! choose 1, 2,3,4 OR 5"
230 goto 80
240 CLS:END

1 'MINECALC.BAS
3 OPTION BASE 1
4 DIM YTD(1 0),TTD(1 0)
5 COMMON
BATON$,NA$,LAH$, IP LADJ PLAM, IP LAS, LOH$,I PLODJIPLOM, IPLOS,SPD,TR K,N ,YT
Do ,TTD()
7 DIM HLAD(10),HLAM(10),HLAS(10),
HLOD(1 0),HLOM(1 0),HLOS(1 0),HLAMX(1 0),HLA(1 0)
8 DIM
H LOMX(1 0), HLO(1 0), N SDI FF(l 0), EWDI FF(1 0), NSY DS(1 0), EWYDS(1 0) ,TOTYDS(1 0)
9 DIM TOTYDSCHK(10)
10OCLS
20 IF BATON$ -"VALID" GOTO 30 ELSE GOTO 1065
30 cls: LOCATE 2,5: PRINT "Enter Data Below Prompts."
40 LOCATE 4,5:PRINT "Is l.P. Latitude N or S? (CAPITALS)": INPUT LAH$
50 LOCATE 5,5:PRINT "Degrees": LOCATE 5,15: PRINT "Minutes"
52 LOCATE 5,25: PRINT "Seconds"
60 LOCATE 6,5:INPUT IPLAD:LOCATE 6,16
61 IPLADRIPLAD*3.141593/180
62 INPUT IPLAV:LOCATE 6,25:INPUT IPLAS
70 LOCATE 8,5:PRINT "is I.P. Longitude E or W? (CAPITALS)":INPUT LOH$
80 LOCATE 9,5:INPUT IPLOD: LOCATE 9,15:INPUT IPLOM:LOCATE 9,25:iNPUT
I PLOS
90 LOCATE 11,5
92 PRINT "Enter true track from I. P. to holes in 3 digits(001 -360)."
94 INPUT TRK
95 TR KR-TR K*3.141 593/180
100 LOCATE 13,5:PRINT 'Enter groundspeed in knots.":INPUT SPD
110 LOCATE 14,5
112 PR INT "Enter weapon trajectory in yards for your speed and altitude (from
TACREFMAN).-
114 INPUT TRAJ
120 LOCATE I18,5:PRiNT "Enter number of mines in this Iine.":INPUT N
121 OLS
130 IPLAMX - IPLAM + (IPLAS/6O)
131 IPLA -IPLAD + (IPLAMX/60)
132 IPLOMX - IPLOM + (IPLOSGO)
133 IPLO -IPLOD + (IPLOMX/60)

49

134 IF (LAH$-"N") AND (LOH$-"'W") GOTO 140 ELSE GOTO 372
140 FOR I - Ito N
150 LOCATE 2,20: PRINT "Hole ";I
160 LOCATE 3,5
162 PRINT "Latitude: Deg Min Sec Longitude: Deg Min Sec"
165 B-4+1
170 LOCATE B,15:INPUT HLAD(l)
171 LOCATE B,21:INPUT HLAM(I)
172 LOCATE B,27:INPUT HLAS(I)
173 LOCATE B,44:INPUT HLOD(l)
174 LOCATE B,50:INPUT HLOM(I)
175 LOCATE B,56:INPUT HLOS(l)
250 HLAMVX(I) - HLAM(l) + (HLAS(l)/60)
260 HLA(l) - HLAD(I) + (HLAMXQI)/60)
270 HLOMX(I) - HLOM(I) + (HLOS(I)160)
280 HLO(I) - HLOD(I) + (HLOMX(I)/60)
290 NSDIFF(I) - HLA(I) - IPLA
300 EWDIFF(I) - IPLO - HLO(l)
310 NSYDS(I) - NSDIFF(l) * 2020 * 60
320 EWYDS(I) -EWDIFF(I) * 2020 * 60 * COS(IPLADR)
325 IF ((TR K>85)AN D(TR K<95))OR((TR K>265)AN D(TRK<275))TH EN 34
330 TOTYDS(I) -(NSYDS(l))/(COS(TRKR))
335 GOTO 350
340 TOTYDS(I) - (EWYDS(I))/(SIN(TRKR))
350 YTD(I) - TOTYDS(l) - TRAJ
360 TTD(I) - ((((YTD(!)/2020)ISPD)* 60)* 60)
370 NEXT 1
371 GOTO 820
372 PRINT "NE, SW AND SE HEMISPHERE PROBLEMS ARE NOT IMPLEMENTED
AT THIS TIME."
374 cls:GOTO 1070
820 OLS
830 LOCATE 2,2:PRINT "IP"
831 LOCATE 2,1 7:PRINT "Track"
832 LOCATE 2,25:PRINT "Speed"
833 LOCATE 2,33: PRINT "Yards to drop"
834 LOCATE 2,49: PR INT "Time to drop"
840 LOCATE 4,2:PRINT LAH$
841 LOCATE 4,4:PRINT IPLAD
842 LOCATE 4,7:PRINT IPLAM
843 LOCATE 4,10:PRINT IPLAS
844 LOCATE 4,1 7:PRINT TRK
845 LOCATE 4,25:PRINT SPD
846 locate 5 2:print LOH$
847 locate 5,4:print IPLOD
848 locate 5,8:print IPLOM
849 locate 5,11: print I PLOS
850 FOR K - 1 to N
860 L-3+K
870 LOCATE L,33:PRINT YTD(K)
872 LOCATE L,49:PRINT TTD(K)
880 NEXT K

50

890 LOCATE 18,10O:PRINT "Press any key to continue."
900 B$-INKEY$:IF B$="" THEN 900
910 CHAIN "MFPLAN"
1065 cls:Iocate 10,10:print "Security Violation, Access Denied."
1066 locate 11,10O:print "press any key to continue."
1067 z$-inkey$:if z$="" then 1067
1070 cis: EN D

1 'MINEPRNT.BAS - print module for minefield planning program.
3 OPTION BASE 1
4 DIM YTD(10),TTD(10)
5 COMMON
BATON$, NA$, LAH$, I PLADJIPLAM, ,IPLAS, LOH$, IPLODJIPLOM, IPLOS,S PD,TR K,N,YT
DO,TTD()
200CLS
30 IF BATON $-"VA LID" GOTO 40 ELSE GOTO 250
40 LPRINT " "l:LPRINT" "
45 LPRINT ,,"UNCLASSIFIED":LPRINT"
50 LPRINT," Minefield Planning Report"
60 LPRINT ,,"for" NA$
65 LPRINT" "
70 LPRINT "initial Position:"
80 LPRINT LAH$' IPLAD "-" IPLAN4 "*" IPLAS ' "LOH$"IPLOD "*" IPLOM "-"

IPLOS
90 LPRINT
100 LPRINT "True Track: " TRK " ""Aircraft Groundspeed:" "SPID
110 LPRINT ""
115 LPRINT "Hole #" ,"Timne to Drop ","Distance to Drop:"
117 LP R NT ,"(seconds)"," (yar ds)'
120 FOR K -1 TO N
130 LPRINT K,TTD(K),YTD(K)
140 NEXT
142 LPRINT"
145 L-PRINT .."UNCLASSIFIED"
150 CHAIN "MFPLAN"
250 CLS:LOCATE 10,10:PRINT "Security Violation, Access Denied."
260 LOCATE 11 ,10: PRINT "press any key to continue"
270 q$-inkey$:if q$-"" then 270
280 cls:end

1 'MINESAVE.BAS
3 OPTION BASE 1
4 DiM YTD(i0OTD(1 0)
5 COMMON
BATON, NA$,LAH$, iPLAD, IPLAM, ,IPLAS. LOH$,IPLOD,I PLOM, IPLOS,SPD,TRK,N,YT
DO,TTD()
20 IF BATON$-"VALID" THEN GOTO 40 ELSE GOTO 140
21 CLS

* 22 LOCATE 2,2.PRINT "When this program stores a file it does not store the"
213 locale 3,2.print "trajectory or the hole lat/Iong. Therefore no class if:.ed'

51

24 locate 4,2:print "data is stored or can be derived from the file as long as"
25 locate 5,2: print "the minef ield is an exercise f ield and not a real operational one."
26 LOCATE 7,5:P R INT "Do you wish to store this data in the f ile? (y or n)"
27 INPUT AN$
28 IF AN$-"Y" OR AN$- y" GOTO 40 ELSE IF AN$-"N" OR AN$-"n" GOTO 130 ELSE
GOTO 31
31 LOCATE 10,5:PRINT "Error choose y or n."
32 LOCATE 12,5: PR INT "Press any key to continue."
33 B$- IN KEY$: IF B$-"" TH EN 33
34 GOTO21
40 LOCATE 5,5:PRINT "What name would you like to store the data under?"
45 locate 6,8: print "(all lower case and remember it please)"
50 INPUT NA$
60 SHELL "RORYPT $ED.MNQ MINE.DAT"
70 OPEN "MINE. DAT" FOR APPEND AS #2
80 WRITE #2,NA$,LAH$,IPLAD,IPLAM,IPLAS,LOH$,IPLOD,IPLOM,IPLOS,SPD,TRK,N
81 FOR B-1 TO N
82 WRITE #2,YTD(B),TTD(B)
83 NEXT B
90 CLOSE #2
100 SHELL "RORYPT MINE.DAT $ED.MNQ"
110 KILL "MINE.DAT"
130 CHAIN4 "MFPLAN'
140 CLS:LOCATE 10,10: PRINT "Security Violation, access denied."
150 LOCATE 11,10: PRINT "Press any key to continue.."
160 p$-inkey$;tf p$-"" then 160
170 CLS:END

1 'MLRETREV.BAS
3 OPTION BASE 1
4 DIM YTD(10),TTD(10)
5 COMMON
BATON$, NA$, LAH$ IP LAD, I PLAMJ IPLAS,LOH$, IP LODJIPLOM, IPLOS,SPD,TR K, N,YT
DO ,TTD()
20OCLS
30 IF BATON$-"VALID" THEN GOTO 40 ELSE GOTO 160
40 LOCATE 5,5: PRINT "Enter the name you stored desired data under. (lower case
please)"
50 INPUT NM$
60 SHELL "RORYPT $ED.MNQ MINE.DAT"
70 OPEN "MINEDAT" FOR INPUT AS #3
80 IF EOF(3) THEN CLOSE #3:PRINT " NOT FOUND": KILL "MINE. DAT":GOTO 150
90 INPUT #3,NA$
110 IF NA$-NM$ THEN GOTO 120 ELSE GOTO 80
120 INPUT #3,LAHI;,IPLADJIPLAM,IPLAS,LOH$, IPLOD, IPLOMJIPLOS,SPD,TRK,N
121 FOR C=1 TON
122 INPUT 4V3,YTD(CjSTD(C)
123 NEXT C
130 C LOS E #3: K;LL " M INE. DAT'
150 CHAIN "MFPL-AN"
160 CLS: LOCATE 10,10 PRINT "Security Violation, access denied."

52

170 LOCATE 11 ,10: PRINT "Press any key to continue."
180 s$-inkey$:if s$="" then 180
190 cls:end

53

Appendix B:
Source code for Dive Log Application in Dbase IV

* Program : DLUSER.PRG
* Author : This is an APPLICATION OBJECT.
* Date :8-04-91
* Notice : Type information here or greetings to your users.
* dBASE Ver....: See Application menu to use as sign-on banner.
* Generated by.: APOEN version 1.3
* Description..: user application of dive log database.

* Description..: Main routine for menu system
***************************~ ***

* ADDED CODE FOR SECURITY MODULE
@3,3 SAY "Enter Password: "
SET COLOR OF NORMAL TO B/B
ACCEPT"" TO PWORD
SET COLOR OF NORMAL TO W+/B
IF (.NOT. PWORDw,"TIGRIS").AND.(.NOT. PWORD="SCUD").AND.(.NOT.
PWORD-"BAGDAD")

DO VIOLATIO
ELSE
RUN pkunzip adldata -sIRAQ

*-- Setup environntw
SET CONSOLE OFF
IF TYPE("gn_ApGcn")-."U '

CLEAR WINDOWS
CLEAR ALL
CLOSE ALL
CLOSE PROCEDURE
gnApGen- I

ELSE
gnApOen=gn-ApGen+ I
IF gnApOen > 4

Do Pause WITH "Maximum level of Application nesting exceeded."
RETURN

ENDIF
PRIVATE gn-oldsize
gn-oldsize=gn-scrsize
PRIVATE gc.bell, ge-carry, gc clock, gc century, geconfirm, gc deli,;

gc-safety, gc-status, gc score, gcjtalk, gc.key, gc-prognum,;
gc quit, gccolor, godisplay, gl_color, gl batch, gniscrsize

ENDIF
*-- Store some sets to variables
gcj)cll -SET("BELL")

54

9c -rarry =SETtuCARRVr,
9rCClock =SET(8CLOC"'
gc-c.olor =SETI'ATTRIBUT7E'l
gc-cnttrySET!CENTJRY')
gq-confirsSET(dCO4F!R!'
g:cjursor zSET(CURBOR')
9c gdeli :SET('DELIM17ERS'l

Fqc -ispay=SET?,uDISPLAYv)kgcsafety =E(SFTN
Qc -status =SETC S-TATUS')
qc-score zBE7(SOREOARD')
qc-talk :SET(ITALK')
SET CONSOLE ON
IF gc-display 0 ' ESA2 u

gn -error=O
0ON E RR OR ?
SET DISPLAY TO ESA275
ON ERROR

END IF

SET BELL ON
SET CARRY OFF
SET CENTUR OFF
SET CLOCK OFF
SET CONFIRM OFF
SET DELIMITERS TO
SET DELIMITERS OFF
SET DEVICE TO SCR~EEN
SET ESCAPE ON
SET EXCLUSIVE OFF
SET LOCp ON
SET MESSPEE 716
SET PRINT OFF
SET REPFIRCESE '0 4
SE T SArETY QN
SET TALK OF;

gl -batch:,F. H is a batc o;eration in ;regress
gl-colcr= ISCO.OR) .AN:. SET(SF-PAY' C' 'C(O0
gn -eror=O tg 0 if rno e~ror, 3therwise an error ozturred

irJey=O It keyress returned froi the INk~EYt) fun:ti~n
gn-srrsizez21 14 nutber of lires orn screen
gn -send=0 I& return value frcm popup of posit:on senus
gn -tracezl it sets trace leve!, however vcu need to chanlge tetplate
gc -brdr='V && border to use when drawing bo,es
g, gdevz'ZON H& Device to use fo, prirting - See Proc. PrintSet
gcyey='N' && leave the a;:Iication
gcrona H& internal program counter to handle nested em~s

*gcquit: ' &I teavar for return tc caller
listval='NC F!ELD' 0 Pick List val-.e

5 5

I-- remove asterisk tc tur: C!,r. c

I SET CLOCK TO

$-- Blan. the screen
SET COLOR TO
CLEAR
SET SCOREBOARD OFF
SET STATUS OFF

I-- Define genus

DO MPDEF WITH 'GOOD' && execute Menu Pro:eas DEcr::ton

$-- Execute rain venu
DO WHILE gqckey = 'N
11111$11ti$tilli$$t

DO USERBAR WITH 'BOOt ,'6OOD5

IF gcquit = '0'
EXIT

ENDIF
ACIIYAIE WINDOW Exit App
Ic cc;:=SET(' CONFIRM)
Ic deliSET("OELIMI!TER')
SET CONFIRM OFF
SE DELIMITER 5FF
O 1,2 SAY 'Do yuu want to leave this a;pDi:a:icr1'

SET gcey P:CT "'' VALID ' NY
READ
SET CONFIRM &Ic conf,
SET DELImITER &!:del:.
RELEASE Ic-con4 7:-09I:
DEACTIVATE :ND h EgitAVp

ENDOD

I-- Resat enviroment
DEqCTIVATE WINDOW Fu!IS:r
?? Color(gcco:or)
gnAp6en=gnA;Sen-I
SET BELL Igc_bll,
SET CARRY &qccarry.
SET CLOCK igc clock,
SET CENTURY &,c century,
SET CONFIRM &qc confirm.
SET CURSOR &gc cursor.
SET DELIMITERS &;c deli.
SET DISPLAY TO &gc display.
SET STATUS &gc.status.
SET SAFETY &gcsafety,
SET SCORE &gc score,
SET TALK &gctalk.

56

IF gn -Apgen < I
ON KEY LABEL F!
CLEAR WINDOkS
CLEAR ALL
CLOSE ALL,
CLOSE PROCEDURE
SET ESCAPE O
SET MESSAGE TC
CLEAR

ELSE
DEFINE WINDOW FuIIStr FROM 0,(TC' ;r c!0::e-3,75 V2NE
DEFINE WINDOW Savescr FROM 0,4% TO, gp oIdsize,7? ',ONE
DEFINE WINDOW Me~ps.-r PQCM 0,0 TO g7 cld:si:e,79 NONE
ACTIVATE WINDOW FLIS-:r

END IF

ENDIF

t Descriptici..: Pr::?dLre f:les for generated te%~ system.
IThe pragravE that folloh are cottv, to sai rc~tines
I The list pro:ed~re is the Meru Prc:ess DEF:7:tion

PROCED'OH" Lck It
PARAIETER lty~e
IF NETWCRK(2

gn error=O
ON4 EhRR DO t utvr
Il ty,.e='1
1I lo:i=FLOC1()

END IF
IF !type='2

1I lock=RLOCPK)
E ND! F
ON ERROR

ENDIF
R ETUR N

PROCED'.RE 14,fo Pox
PARAMETERS lc-Say
? Ir -say
REPLI:ATE(-%,LEN,'c say))

RETURN
I EOP: Irnfc Box

57

PROCEDURE get-se~e
I-- Set the user selection I stz-e PAR irtc var:ablec
gn -snd = AR() && Varia:ble for Dr:rnt tastin,
DEACTIVATE POPUP
RETURN

PROCEDURE ShowPick
listval:PROMPT()
IF LEFT(entryg.)"?
It filezpaPUP()
DO &Ic ffle. NITHI 'A'
RET URN

ENDIF
IF TYPE('Ir-?jndow'):'Ub

ACTIVATE WINDOW ShowPick
ELSE

ACTIVATE WINDOW &lc-wiidow,
ENDIF
STORE 0 TO lnikey,%l,x2
In -i keyzLAST(EY)
IF In~ikey=13

IF %I 0

ELSE

ENDIF
CLEAR
I It f~dist

ENDIF
ACTIVATE SCREEN
RE i~k
IEOP: ShowPick

PROCEDURE r~eanu,
I-- test whetner re~cvt opt~c. was see:ted
DO CASE
CASE qc -dev='CON'

?'Press any key to co~tinue..."
xxzINKEY (C

CASE gc -dev='PRN'
SET PRINT OFF
SET PRINTER TO

CASE g.rdev='1IT'
CLOSE ALTERNATE

ENDCASE
qc -dev='CON'
RETURN

I EOP: Cleanup

58

PROCEDURE Pause
PARAMETER lcmsg
I-- Parameters : l-s = ressage ne
IF TYPE('Icmtessage')='U'

gr..error=ERROR()
ENDIFlc Isg = lc..msg
Ic Dptlon='O'

ACTIVATE WINDOW Pause
IF gn error > 0
IF TYPE('Uc1-essage')=UN

t C,I SAY [An error has occu-re I - Ewro message:)+MESSASE,)
ELSE
@ 0,1 SAY 'Error I]+Ic *essags

ENDIF
ENDIF
E 1,1 SAY 1cmsg
WAIT ' Press any key to continue...'
DEACTIVATE WINDOW Pause
RETURN

I EOP: Pause

PRCCEDURE Multe-r
I-- set the global error variable
gn.error=ERRCR()
I-- contains error number t, test

Ic erno=STR(ERRO;(),3)+,
1-- o~tcn var.
Ic opt='T'
I-- Dialog box for optiors Try again ano Retu.rn to menu.
IF Ic ernc $ '8,19,12,129,

ACTIVATE WINDOW Pause
00,2 SAv Ic.e-no- ' +?ESSASEi)
0 2,22 BAY "T = Try again, F = :eturn to renr.' BET Ic opt ;

PICTdRE '!' VALID Ic-ot S 'TP
READ
DEACTIVATE W!NDW Pause
IF Ic .opt = 'R"

RETURN
ENDIF

ENDIF
$-- Display tessage and returr to menu.
IF .NOT. Ic.erso $ 'I0,09,128,129,'

DO PAUSE WITh ERDR()
RETURN

ENDIF
I-- reset global variable
gnerror=O
1-- Try the comiand again
RETRY
RETURN

59

I EDP: Multerr

PROCEDURE Trace
t Desc: Trace procedure - to let pronramre- know what poaule

S s about to execute and what module has executec.

PARAMETERS p.sg, pQvI
t-- Parameters : p.s message line, P_11-1 tra:e level

Icmsg = pmsg
Inlv = pIl
h ltrp =
IF gn trace . Inlvl

RETURN
ENDIF
DEFINE WINDOW trate FROM 5,0 I! 6,7z DOUBLE
ACTIVATE WINDOW trace
DO WHILE Ictrp <% '0'

CLEAR
I 2,40-LEN !cI/2 SAY irts;
f 4,05 SAY 'S - Set trace level, D - Dis;Iay status, 4 - display Mecoy '

1 5,05 SAY 'P - Turn printer on, 0 - tc Quit'
Ittrp = ,
15,38 BET I-trp PICTURE
READ
DE CASE
CASE Ictrp = 'S'
@ 2,01 CLEAR
1 2,33 SAY 'Set tra:e level'
1 4,05 SAY 'Enter trace level tc charge to:' SET on-trace PICTURE 'S

@ 5,05 SAY
READ
IF gn trace%,

S2,0! CLEAR
t 3,0! S v 'Trace !s ncw t'.rne6 o'f..lo reactivate Tra:. - Press [;)
* 4,05 say 'Press an, key tb :ontznue..'
WAIT "
ON EY LABEL F3 gr tra:e •

EN) I c
CASE Ittrp = 'D'

DISPLAY STATUS
WAIT

CASE It trp = 'M'
DISOLAY MEMORY

WAIT
CASE Ictrp = 'P'

SET PRINT ON
ENDCASE

ENDDO
SET PRINT OFF
RELEASE WINDOW trace
* 24,79 SAY
RETURN

60

I EDP: Trace

PROCEDURE PrintEet
I-- Initialize Ya:abies
gc -dev= CON'
Ic chaice:'
gnpkey:O
gn-send:3

DEFINE WINDOW printen; FROMl vnB.2 T1 17,!t

DEFINE POPUP SavePrin FROM 1O,40
DEFINE BAR I OF SavePrin PROMPT , en Gutp;:t to . .'

DEFINE BAR 2 OF SavePrin PROM;T REFLCATEHR1li),24) SV:P
DEFINE BAR 3 OF SavePrarp PROMPT 'CODN: Ccnsole' IESSAHE 'Send output to Screen*
DEFINE BAR 4 OF SavePrir PROMPT "LPTI: Parallel ;ort I " ESSAGE 'Send outPUT 'c
LPTI:'
DEFINE BAR 10 OF SaveFrin PRCOFT ILPT2: Parallel p:r- 2 MESEABE OSend cutp-t t

IPT 2:'
DEFINE BAR 6 OF SaVerjn FROirFj 'OM: Ser~aI port I' MESSAEE '-^end output to
COfli:'
DEFINE ?A: 7 Y Saverir PRODiP7 FILE :R;FOIRT .TX1' MEESAS9E 'Seno output to
File Report.txt'
ON SELEPCTI2N POPUP Eave~rin D: get sele

ACTIVATE PCOPUP SayePr;-
RELEASE POPUF SavePrin

gnjkey=LA3T(EY0)
IF qn send 7

;c dev 'TXT'
SET A.TERNATE TO PEFCrliTU

SET ALTERNATE ON
ELSE

IF XN7. (gnsen 3 .05. LAEki(T 1 27
gc-dev = 'PFN'
test, = ~ET LP7!L;T2C0 l
ON ERROR DO prntrtry
SET PRINTER TO &tetmp.
IF _p~ey 0 27
SET PRINT H~

ON ERROR
END IF

ENDIF
RELEASE WIND5, printemP
RETURN

PROCED'URE prntrtry
PRIVATE iceyscape
Ic escape = SEI(ESCAPEI

61

IF .NOT. PRINTSTAT'S(")
IF Ic escape ='ON'

SET ESCAPE OFF
ENDIF
gnjkey =0
ACTIVATE WINDOW printemp
t 1,0 SAY 'Please ready your privter or'
t*2,0 SAY ' press ESC to :ancEl'
DO WHILE .CT. PR!NTSTATUS()) .AND. gr pkey 2?

gnjkr, INKEY)
ENDDO
DEACTIVATE NINDOO printeep
SET ESCAPE &Icescape.
IF grnpkey 0>27

RETRY
END]F

ENDIF
RETURN

I EOP: PrintSet

PROCEDURE Positibn
IF LENMDFO) 0

DO Piusm WITH 'Dataiase rot in use.
RETURN

ENDIF
SET SPACE ON
SET DEL!MITERS OrF
In-type:0 0& sutle.'el sele:tion
lnrkey=READKEY() 1! test for ESC or Returr
In -rec=RECQ0(06 De; record r'.Rter
ln-nuszo &X for r2 o4 a nutter
ld.A~atezDATEfl 0& f:r inp,.t of a date
It opticriz0' 0& man c-titr ie. See'. 5oto and Lz:ate
1-- Scope ie. AL , REST, NE' (n)
STORE SPAPME10) TO l:-scp
I-- 1 Character SEEV, 2= For clause, Z Wile :la~se
STORE SPACEM)(TE lc Inl,]:_1n2, lcrjnl
It tewp:
1 0,00 SAY 'Index order: ',I:FU':CADEF(','Database is in natural 0rder',ORIErt)
1 1,00 SAY 'Listed belwt are the 1:rst 16 flelds.'
Ic -tepzREPL ICATE (CR'196) ,19)
O 2,0 SAY :HR(2l8)41C tegp4CHR(94!+ IC teap+CHR(l54)*Ic te.:;+CH~t194 Itic teap
Innuv:240v
DO WHILE In-nue (560
Ic -tezp:FIELD((in -nut-2401,I20 +1)
I CInnu@/80~,M0D(lnnua,E0] SAY CHR1,179)4;

It temp+SPACECII-.ENIc tea-))+;
SUPSTR(': Char zDate Logic zNut Float Meao
AT(TYPE(I It temp) ,'CDLNFMJ')18-7,e)
In nua~ln nue420

ENDDO

62

DEFINE POPUP Positl FROM 8,30
DEFINE BAR I OF PositI PROMPT ' Position Sy SKIP
DEFINE BAR 2 OF PositI PROMPT REPLICATE(CH 1!9),15) SkIP
DEFINE BAR 3 OF Positl PROMPT ' SEEK Record" MESSAGE 'Search on index key' SKIP
FOR "=ORDER()
DEFINE BAR 4 OF Positl PROM'T ' SOTO Record" MESSASE "Position to specific record'
DEFINE BAR 5 OF Posit! PROMPT ' LnCATE Record ' MESSASE 'Locate record fcr
condition'
DEFINE BAR 6 OF Positl PROMPT' Return' "EESASE "Return without pcsitionrngL
ON SELECTION POPUP Positi DO get-se!e

SET CONFIRM ON
DO WHILE Icoption='0'

ACTIVATE POPUF Pcsitl
Ic option = Itrip(str(gn send)) && for popuP
IF LASTKEY() 27 ,OR. Itcoption=*61

SOTO Inrec
EXIT

ENDIF
DO CASE
CASE icoution='3'

I-- Seek
IF LEN(NDX(I))=0 .ANC, LEN(NiW1))=

DO Pause WIT- 'Can't use th:s opticn -N- i'.e., f::es are open.'
LOOP

ENDIF
In type=!
Ic _nI=SPACE(40)
DEFINE WlhDnW Foslt2 FROM 5,19 T1,6 DC.LE
ACTIVATE WINDO4 Pcelt:
1 1,1 SAY 'Erter t =e type : eypress:on:' SET In..ty;s ;IT 'I FAN E 1,
@ 2,1 SA (I=:hara:ter, 2=n 2er.c ad j=jitE.,"
SET CURSOR ON
REA2
SET CURSC CrF
IF .NC7. (EDEY() z 12 .D. READEY 268

SET CONFIRM El
@ 3,1 SAY 'Enter the key ex;ression to search for:'

IF In type=3
@ 4,! SET Id date PICT 'D'

ELSE
IF Intype=2
@ 4,1 SET In-num PICT 'il1t1t11'

ELSE
@ 4,1 SET IcIn!

END!F
ENDIF
SET CURSOR ON
READ
SET CURSOR OPF

63

SET CONFIRM OFF
IF .NOT. (READKEY() 1:2 .Ci RE4DKEYI) E2)

l: tezp4IFF !n ty~e~1,'TR!cI n I ,IF.,,. yoe-2, I.. nt',Idae')

SEEK &lcteip.
ENDTF

ENDIF
FELEASE WINDOWS Fosit2

CASE Ic..option='4'
S-- Goto
In type=1
DEFINE POPUP Posit2 FROM 8,7C
DEFINE BAR I O Pcsit2 PROMPT ' SOTO:' SKIP
DEFINE BAR 2 OF Posit2 PROMPT REPLICATEtCHRN196),1') SKIP

DEFINE BAR 3 OF Posit2 PROPT ' TOP' MESSAGE '6OTO Top of File'
DEFINE BAR 4 OF Posit2 PROMPT * BOTTOM' MESSASE 'OTO Bottom ol File"
DEFINE BAR 5 OF Posit2 PROMPT ' Record # ' MESSAGE 'BTO A Specific Record'
ON SELECTION POPUP Posit2 DO get-sele
ACTIVATE P5PUP posit2
Intype = gn send
IF LASTKEY() <> 27
IF In-tye:5

DEFINE WINDOW PosIt2 FROM 8,26 TO 13,!1 DOUILE
ACTIVATE WINDOW Posit2
Innum=0
f 3,1 SAY 'Max. Recort I =+LTISTtRECOT8))
1 1,1 SAY 'Record to GOTO' BET !nn.x PICT '#Itt' RANGE 1,RECCOJNT)

SE7 CURSOR ON
READ
SET CURSOR OFF
IF ,NOT. iPEAKEV() = 12 .'R. READ EYO) 268)

60'O iflnn2E ' IF~~

RELEASE , SPcsit
ELSE

lrte3 -II. ..te-.,',uP~ ,IOTTC"V

CCT? &c-tem.
EN[IF

END!F
CASE Ic optirn='5'
I-- Locate
DEFINE WINDOW Posit" FROM 8,16 TO 14,66 DOULE
ACTIVATE WIN:OW Posit2
o 1,19 SAY 'ie. ALL, NEXT (n, and REST'
1 1,01 SAY 'Scope:' GET Icscp

1 2,01 SAY 'For: ' SET Ic In2
3,01 SAY 'While:' GET IcIn3

SET CURSOR ON
READ

SET CURSOR OFF
IF ,NOT. (READKEY() = 12 .O. READKEY() = 268)

Ic-tesp=TRIMt c.scp)
Ic.temp:ic_temp + IIF(LEN(TRIM(,1 In2))) 0,' FOR '+TRIM(lc_In2),")

64

ICtejD=!C te2; + I IFI(fTRI~f cIn I 0,8 WP.:LE 'iTRI(!N :;"

IF LE kItee) > Q
LCA4TE tIc te;.

ELSE
DO Pause WITH 'AI! faeis we-e blank,'

ENDIF
ENDIF

RELEASE WINDOW Posit2
ENDCASE
IF EOFf)

DO Pause WITh 'Record nct fojn.0
SOTO In ree

ENDIr
IF READKEYI)=I: .OR. RELKEY")z 26E .O. LAETKEY!)=27 && Es: was !ut
Ic oDtlon='0'

ENDI r

END,'[
SET CURSOR 4c.cursor.
SET DELIMITERS &;:_te!i.
SET CONFIRM OFF
RETURk

t EIP: Positio,

PROCEDURE Pe'Act
SAVE SCREEN TC PrDwscrrIcA3en.
DEACTIVATE W!ND2w rulls:,
SET SCOREBOARLC ON
RETUR1N
I EOP: Be04ct

PROCEDURE AftAct

CLEAR
SET SCOREBOARD OFF
A TIVATE WINDr. lsN r
RESTORE SCREEN PRC Broms:,&:_ A. en.
RELEASE SCREEN Brorsicrl:_A~enn,
RETURN
I EOP: AftAct

PROCEDURE Postnh!4
Injetkey:!hNEY')
DEFINE WINDOW Teaphelp FROM 3,12 TO 19.67
ACT!VATE WINDOW Temphe!p
DO CASE
CASE 'SEEK' S PROMPT()
I-- HELP SEEK

'SEEV (exp)'

? ' Evaluates a spe:ifxed exPression and attespts to'
7 ' find its value in the master index of the database'
? file. Returns a Iogical true (.T.) if the :ndex'

65

? key is found, anl a logical false t.F.) if it is'
? nct found.'
9

?, Ex: SEEK CTOD('I/03/27') - conxerts the'
? expression from character to date and'

then searches for the value in te index'

CASE LEFT(LTRIV(PROhPT()),4) $ '6OTO TOP 07T Feco'
I-- HELP SOTO
? SO!60T0 BOTTOM/TOP [IN (alias)]'
? or'

9,60/60T0 [RECORD] (record number) [IN (alias)]'
9 or

?, (record number)'

' Positions the record pointer to a specified recor!"
? or location in the active database file."

7' TOO moves the pointer to the first re:ord'
' POTTOM amoves the pcinter to the last record"

? Ex: 4 - moves the recc-d pointer to re:vrd 4'
9

CASE 'LOCATE' I PROMPT()
I-- HELP LOCATE

LOCATE FOR (condition) [scope]'
9 [WHILE (ccndition)]'

?'Searches the active database file, sequertial!y,'
for the first record that meets the specified"0

* criteria. The function FOUND() returns true (.T.)l
' if LOCATE is suc:e~sful."

I

? ' Ex: LOCATE ;OR Ape = '25' NEXT 5'
" sear:hes for the next five records'
v containing 25 in the Ape fiell"

CASE 'Return' S PROMFT()

Return to action in progress, with or without'
? ' positioning the record pointer.u
ENDCASE
Ingetkey = INKEYO)
DEACTIVATE WINDOW Tecphe!p
RELEASE WINDOW Tempheip
RETURN
IEOP: Postnhlp

FUNCTION Color

I Format:
$ COLOR((expC)

66

I (expC) NORMAL, HISHLISHT, MESSASES, TITLES, BOX, INFORMAT!ON,
FIELDS
t or a variable with a!! colors store ir it
I Ver: dBASE 1.1
t
SThe COLOR() function either returns or sets colors returned with the
I SET!'attribute') settin;
t If (expC) is a colOr string then nul! is retur-ed otherwise the color

I setting is returned for one of dBASE's cc!or oDtions

ItSee Also: SET('attrbute-

PARAMETERS setcolor
PRIVATE color nut, color str, cnt

set-color = UPPER(set-color;
!F set color = 'COLOR'
$- Return standara, enhancec, border colors :,1v
RETURN SUPSTR(SET!'attr'),l, AT[' &', SET 'attr'l))

ENDIF

$- Decla-e array to parse c0Icr o;tlons 4rom SETI°attr"2
PRIVATE color-
M"CLARE colcr_[8]
$- Determine if user is restoin; colcrs vs. savin, c:lors
IF ' &' $ set color

color str =,'+setcclo, &I Restore color attributs
ELSE

cclor-str = & Save :olor attrit.tes
ENDIF

t-- Stuff array with :nd:vial color settirz

color str = STUFF(cci:r str, P.1' t", cocr stl,, 4, ",')
cnt I
VO WFILE tnt 8

colov.str rSTR~coor str, AT-,', ::lcrstr) 4!
color_[cnt] SUJSTRtcolc,_str, 1, AT',', co.cr-str 1) -)
cnt = cnt -I

ENDDO

IF ' I' I set-color
I-- Set color back
SET COLOR TO ,,&colorH[3). & Eo'oer color
SET COLOR OF NORMAL TO &cclorIl.

SET COLOR OF HI8HJLIHT TO &rolor_[2).
SET COLOR OF MESSAGES TO &color_[4].
SET COLOR OF TITLES TO &color[5].
SET COLOR OF BCX TO &color_[6].
SET COLOR OF INFORMATION TO &color_[7].
SET COLOR OF FIELDS TO &color_[8.

ELSE

67

-- Return color str:ng reocestef

D3 CASE
CASE set color f 'NORMAL'

color-nut = I
CASE set color $ 'H16HLIGHTI

color num = 2
CASE set color $ 'BORDEFR

color nut = 3
CASE set colcr $ 'MESSASES"
color-num = 4

CASE set color S OTITLES'
color nur = 5

CASE set color $ 'POX"
color nut z 6

CASE set cclor $ 'INFORMATION'
color nut = 7

CASE set cclor $ '=IELDS"
color~num = e

ENDCASE
ENDIF
RETURN 1F(0 &" $ setcolor, ", color colornut])

I Progras : rFDEF
I Author : This is an APPLICATION OHECT.
I Date : 8-O4-91
1 Notice : Iy;e inforiation here or greetinvs to ycur users,
$ dBASE Ver : See Aplicat.on menu tc use as sign-on banner,
t 6enerated by.: APSEN version !."
$ Descviption_.: user aplilcation of dive lOg database.

$ Description..: Defines all merus in the system

PROCEDURE 4PDEF

PARAMETER BATON
IF .NOT. BATON=GOOD'

DO VIOLATIO
ELSE
11111111111tis

IF 9lcolor
SET COLOR OF NORMA. TO W+IB
SET COLOR OF MESSASES TO WIN
SET COLOR OF TITLES TO W/B
SET COLOR OF HIHLIGHT TO RG+IGB
SET COLOR OF BOX TO RS6/S
SET COLOR OF INFORMATION TO ?/W

68

SET COLOR OF FIELDS TO N16B
ENDIF
CLEAR

t-- Sign-on banner

SET BORDER TO
1 5,9 TO 16,69 DOUBLE COLOR RG+/SB
* 7,10 SAY - I I I WELCOME TO AdTOMATED DiVE L'S VERSION 1.1 1 1 t'
1 9,10 SAY ' This user application allows for entering dives, fird-1
@ 10,10 SAY 1 ing dive logs for printin; or browzing, and find:n and'
1 11,10 SAY ' printing of qualification lists. Security of inforza-,
1 12,10 SAY ' ticn is ensured if users keep their d:ver nutber se:ure.'
@ 13,10 SAY ' You must know your diver nutmer to accomplish any of the'
14,10 SAY ' systems fun:tions. Thani you fcr using ADL 1.11'
* 6,10 FILL TO 15,LB COLOR W+/N

24,30 SAY ' Press '+CRR(17)+:HR(196)+CHR(217)+' to continue.
gnikey=INKEY(500)

CLEAR

I-- Prevents clearing of menus frot :o~zands:
$-- SET STATUS and SET SCOREBOARD
DEFINE WINDOW FulIlScr FROM 0,0 TO 24,79 NONE
I-- Position at runtime and batch prc:ess
DEFINE WINDOW Savescr FROM 0,, TO 21,7- NONE
t-- F1 Help
DEFINE WINDOW HeInscr FROM 0,0 TO 2!,7i NONE
IF gnAGen=l
$-- Are you surel (exit applicaticn)
DEFINE WINDO0 Erit App FROM 11,17 TO 15,K DOUBLE
$-- Pause message box
DEFINE WINDOO Pause FRC 1,00 TO 19,79 DOgj'E

ENDIF

ACTIVATE WINDOW FLIS:r
24,00
1 23,00 SAv 'Loading...'
SET BORDER TO DOUBLE
t-- Bar
DEFINE MENU USERBAR MESSABE 'Select ar optior with the arrow keys and push
ENTER.'
DEFINE PAD PAD I OF USEREAR PROMPT 'Dive' AT 1,1
ON SELECTION PAL PAD 1 OF USERBAR DO ACTOI
DEFINE PAD PAD_2 OF USERBAR PROMPT 'Log' AT 1,10
ON SELECTION PAD PAD_2 OF USERBAR DO ACTOI
DEFINE PAD PAD.3 OF USERBAR PROMPT 'Guals' AT 1,18
ON SELECTION PAD PAD..3 OF USERBAR DO ACTOl
DEFINE PAD PAD.4 OF USERBAR PROMPT 'Exit' AT 1,28
ON SELECTION PAD PAD.4 OF USERBAR DO ACT!
?? 8

SET BORDER TO DOUBLE

69

I-- Popup
DEFINE POPUP DIVE FROM 201 T 4,17
MESSAGE 'Press ENTER to contipxe/enter a dive or else -- (arrow key)'
DEFINE BAE 1 OF DIVE PROMOT "Ente- a d:va'
ON SELECTION PCPUP DIVE DO AT102

SET BORDER TO DOUBLE
I-- Popup
DEFINE POPUP LOB FRD 2,10 TO 6,2i
MESSASE 'Choose an option witt arrow ieys ard push ;ETURN or else use -- (arrow key)'
DEFINE BAR I OF LOS PROMPT "Fine a log"
DEFINE BAR 2 OF LOB PROMPT 'Browze found loq'
DEFINE BAR 3 OF LOB PFOMPT 'Print four, log,

ON SELECTION POPUP LOB DO ACT03 WITH 'EDD'"
$11111H111151

?? '.'

SET BORDER TO DOUBLE
t-- Popup
DEFINE POPUP DUAL FROM 2,18 TO 5,42
MESSAGE 'Use arrow keys to select ar opt:on and press RETURN or else --> arroo keys)"
DEFINE BAR I OF OUAL PRO PT 'Fine a qual list'
DEFINE BAR 2 OF DUAL PROMPT 'Print found q~al lst'
11St$1111
ON SELECTION POPUP DUAL 2 ACT04 WITH '00D0'
1111111111tt
?? I.,

SET BORDER TO DOUBLE
I-- Popup
DEFINE POPUP EXIT FROM 2,28 TO 4,40
MESSAGE 'Position: '+CHR27)+CHR(26;*HR(25)+CHR24)' Sole::
I CHR(l7)+CHR(!6)4ChR(217)4' Help: Fl'
DEFINE BAR I OF EXIT PROMPT 'Return to DEASE IV3
ON SELECTION POPUP ElI" DO ACTI5

ENDIF

RETURN
I-- EOP: MPDEF.PRS

PROCEDURE IHELP!
In-key=INKEY()
ON KEY LABEL Fl
lcjopmenu=IlF(= PPUP(, MENU!), POPUP) I
ACTIVATE WINDOW Helpscr
SET ESCAPE OFF
ACTIVATE SCREEN
1 0,0 CLEAR TO 21,79
1 1,0 TO 21,79 COLOR R6+/6B
1 24,00

70

*24,26 SAY 'Fress any xey to ccit:rue...'
0,0 SAY 01

DO CASE
$-- help for menu USERBAE
CASE 'USERBA' = ICPorsenu

02,2 SAY 'N Help defined.'
t-- help for menu DIVE
CASE 'DIVE' Ic_pop~enu

02,2 SAY "N: Help define .'
$-- help for menu LOS
CASE 'LOS' = Iro"enu

02,2 SAY 'Nc Help defined.'
I~ help for menu DUAL
CASE 'DUAL'= 1cpoptznu

02,2 SAY 'No He!; defined.'
$-- help for menu EXiT
CASE 'EYIT' = icPoDmenu

@2,2 SAY 'Nc Help defired.'
OTHERWISE

@2,2 SAY 'Unk'own aenj name, help was never def:ned.'
ENDCASE
Inkey=INKEY(O)
SET ESCAPE ON
024,00
DEACTIVA!E WINDOW He!,scr

ON KEY LABEL F1 DC IHELP!
RETURN
-- EOP: IHELP!

I Program : USERBAR.PP%
I Author: This is an A.PIATION OEJECT.

Date 8-04-91
I Nctice : Type infortaticn here or greetings to your users.
I dBASE Vet....: See Apn!ication menu to use as sign-on banner.

I Senerated by.: APBEN version 1.3
1 Description..: FIRST MENU LEVEL IN USER APPLICATION.

I Description..: MenL actions
$$zI$$1:$s**:I*1III$*IIIIIII1IIIII$I$$:1:IIItIIIII

PROCEDURE USERBAR
PARAMETERS entryfIg, EATON
PRIVATE gc_prognum
gcprognum: 01'
SET COLOR OF NORMAL TO W+/B
CLEAR
PRIVATE IcApSen
IcApen=LTRIM(STR(gr_APen))

71

DO SETOI
IF gn.error > 0

gnrerr~r=O

RETURN
ENDIF

I-- Before menu code

ACTIVATE HENU USERBAR

O 0O CLEAR TO 2,79

I-- After menu

RETURN
$-- EOP USERBAR

PROCEDURE SETOI

ON KEY LABEL Fl DO 1HELI

DO DBFOI && open menu level datanase

IF gn.error = 0
IF gl color .AND. .NOT. EET[,^TRIBT'E W+IB,R5+/8SNIN +;

CHR(38)+CHR(38)+' WI/,R/, B,BIWhISB'

SET COLOR OF NORVAL TO WE/B
SET COLOR OF MESSAGES TO W+/N

SET COLOR OF TITLES TO N/B
SET COLOR OF HISHLISMT TO R6+!GB

SET COLOR OF BOX TO R34B
SET COLOR OF INFORMATICN TO BIW

SET COLOR VF FIELDS TO N/!B
ENDIF

SET IORDER TO
1 0,0 TO 2,79 DOJBLE COLOR RS+/G

t ,I CLEAR TO I,7E
O 1,! FILL TO 1,78 COLOR W!N

O 1,1 SAY 'Dive' COLOR W+/N
@ 1,10 SAY 'Log' COLOR W+/N
@ 1,l8 SAY 'Duals' COLOR WN
O 1,28 SAY 'Exit' COLOR Wi/N

ENDIF
RETURN

PROCEDURE DBFO!
CLOSE DATABASES

I-- Open menu level view/database
Ic -essage='0'

ON ERROR Ic-message=LTRI(STR(ERROR()))+' '+MESSAEE()
USE DIVE.DBF

72

ON ERROR
gnerror=VAL(I:_messa;e)

IF gnjerror > 0
DO Pause WITH
'Error opening DIVE.DPF'
Ic new='Y'
RETURN

ENDIF
Icnew='Y°

RELEASE Ic.message
RETURN

PROCEDURE ACTOI
$-- Begin USERBAR: EPR Menu Actions.
$-- fbefore item, action, and after iteil
I
PRIVATE Ic new, Ic dbl
Icnew:'
Icdbf='
DO CASE
CASE 'PAD_' =PAD()

Ic new='Y'
DO DIVE WIT ' 01'

CASE 'PAD 2' = FAD)
Ic nem='Y,
DO LOG WITH ' 01

CASE 'PAD = ' A!;)
c new='Y

DO QUAL WITH I 01
CASE 'PAD 4' z PAD()

Ic new =:Y.

DC EXIT WITH ' vi"
OTHERWISE
@ 24,0A
@ 24,21 SAY 'Th:s iter has n3 acti-. Fress a key.'
x=!NKEY 'fl
0 24,00

ENDCASE
SET MESSAGE TO
IF gc_quit='G'
IF LEFT(entryflg,l! z 'P'

DEACTIVATE MENU
ELSE

DEACTIVATE MENU & USERiAR
ENDIF

END IF
IF Ic new='Y'
Ic ile='SET '+qcprb;nua
DO &Ic file.

ENDIF
RETURN

7Z

I Program : DIVE.PRS
I Author ... : This is an APPLICATION OBJECT.
I Date : e-04-91
I Notice : Type information here or greetings to your users.
I dBASE Ver : See Application menu to use as sign-cn banner.
I Senerated by.: APSEN version 1.3
I Description..: User pcpup for enterin; a dive.

t Description..: Menu acticns

PROCEDURE DIVE
PARAMETEE entryflg
PRIVATE gc_prognum
gcprognu ='02'

DO SE702
IF gn error > 0

gn error=(
RETURN

ENDIF

$-- Before menu code

ACTIVATE POPUP DIVE

I-- After aerj

RETURN
I-- EOP DIVE

PRCCEDURE SET02
ON KEY LAEL F! DO IHELFI

DO DBF02 && open menu level database

IF gn error = 0
IF glcolor ,AND. NOT. SET(IATTRIBUTE') 'WI+/,REi/SP,4/N ';

CHR(38)+CHR(38)+' W+/NW/B,RG+/?,B/w,NIEB"
SET COLOR OF NORMAL TO W+/B
SET COLOR OF MESSAGES TO W+/N
SET COLOR OF TITLES TO N/B
SET COLOR OF HISHLIGHT TO R+/G
SET COLOR OF BOX TO R+B/IS
SET COLOR OF INFORMATION TO B/W
SET COLOR OF FIELDS TO N/6B

ENDIF
ENDIF
RETURN

74

PROCEDURE DEF02
CLOSE DATABASES
I-- ppen, zemu Ieve' vihiddatabase
IEctessa~e='0"
ON ERROR Ic se~sa=nL1I MSTNtERR: ')) + IM~ESAEE

USE DIVE.DPF
ON ERROR
gn-error=VAL(Irmessa;e!
IF gn error > 0

DO Pause WITH
'Error. openir.- DIVE;.DBr'
1c new='Y'
ETF

END'F
Ic new'Y'
RELEASE Ictessare
RETURN

PROCEDUVRE ArTC:2
I-- Begin DIVE: POPL" k ~t-mrs.
I-- (before itet, action,~ and after itEZ)

PRIVATE Ic newt
Ic nex=:

DO CASE
CASE BA"-', =

IF .NOT. ;I-tat:h
D3 Bef Act

E N U:F
SET E.Cr.REKIAD ON
SET MESSAGE 710
I-- Dest: attact1 io~rit file !IYEPF.VM
SET FORM T2 D~
A~pEnD

Eg-- clce ioat 1.1r, ~C as not tc at'ezt PEK&s
SET FORMAT TO
SET SCOFEBOPRI OFF
IF ,NOT. q! batch

DO AftAct
ENDIF

ENDA4SE
SET MESSASE TO
IF qcquit='O

IF LEFT(entryfIq~l) Y
DEACTIVATE lEINU

ELSE
DEACTIVAE PODUF &&DIVE

ENDIF
ENDIF
IF Ic new'Y

75

Ic file='SET'+g:_ronur
DO &Ir file.

ENDIF
RETURN

Program : LO.PR6
I Author This is an APPLICATION OBJECT.
I Date* 8-04-91
I Notice : Type information here or greetings to your users.
I dBASE Ver: See Application menu to use as sign-on banner,
I Senerated by.: APSEN version I.!
I Description..: Log popup in user applicaticn of dive log

D Description..: Menu actions
SI$S15$11IISIII:I$$1515$fII511511115511511t1I$$IItI$$$U1I!

PROCEDURE LOG
PARAMETER er.tryfl;
PRIVATE gcprognj2
qcjronuW=u03w

DO SET03
IF gqnerror) 0

gn.error=O
RETURN

ENDIF

I-- Before menu code

ACTIVATE POPUP LOE

t-- After Benu

RETUPN
I-- EOP LOE

PROCEDURE SET03
ON KEY LAEEL F! DO 1kELPI

DO DBF03 i& open menu level datatase

IF gn error = 0
IF gI color .A4r. .NOT. SET(WATRIBL'TE') ffN°!E,R6+/6,N!N 04-

CHR(38)+CHR(.)+ W4!NW!BR8+tGB,B!W,NIE"B
SET COLOR OF NORMAL TO WB
SET COLOR OF ?ESSA5ES TO W+IN
SET COLOR OF TITLES TO W/B
SET COLOR OF HIGHLIGHT TO RE+/6B
SET COLOR OF BOX TO RE4/6?
SET CULOR OF !NFORMATION TO B!W
SET COLOR OF FIELDS TO N/Sb

ENDIF

76

ENDIF
RETURN

PROCEDURE DBF03
CLOSE DATABASES
I-- Open senu level Yiewldatabase
Ic- essage:'O'
ON ERROR Ic essage='TRl(STR(ERRGR()))+' '4MEESAS"E1)
USE DIVE.DbF
ON ERROR
gn -error=VAL(I iciessage)
IF gn-error > 0

DO Pause WITH
'Error opening DIVE.DPnI
It new='Y
RETURN

ENDIF
Ic new:'Y'
RELEASE Icemessage
RETURN

PROCEDURE ACTOZ
I-- Begin LOS: FOPUP Meru Actiors.
$-- (before iteF, action, anc after iter',
I

PARAMETER BATON
IF .NOT. BATON:'65CD'

DO VID164TI-
ELSE

PRIVATE Ic ne4, Ic d:f
Ic newz*
It dbfz'
DO' CASE
CASE BAR I
IF .NOT. gl batch

DO BefAct
ENDI F
SET SCOREBOARD ON
SET NESSASE 7O

DO JOINI.PR6 WITH '60OD'

SET SCOREBnARD OFF
IF .NOT. 91lbatch

DO AttA:t
END!F

CASE BAR)) z 2
I-- Open Ites leve! Y:ew,ldatabase an.d indexes

77

CLOSE DATABASES
Ic dbf='Y'
IC essawe"c

ON ERROR lcatessaneLTRItSR(EREi'Rfl)' '40.EEStSE1,)
USE TEMP.DBF
ON ERROR
gn -error=YAL Ic -sessage)
IF gn-error) 0

DO Pause WITh
'Error opening TEMP.DEF
gn -error=O
Ir -file='SET1'4qcjpronus
DO &lc file.
RETURN

END IF

lc newz'Y'
RELEASE lc -essage
IF .NOT. Q1 batch.

DO BefAct
ENDIF
SET MESSASE TO
$-- Desc: Report
REPORT FOR? LOS-REPO PLA!N
WAI T
IF *NOT, qIbatch

DO AftAct
ENDWF

CASE BARH) 3
$-- Open Itee leve! Yiewldatatase and intexes
CLOSE DATABASES
Ic dbf=:Y'
Ic_&essaqe="O'
ON ERROR Ic message:V'RIM(S1R(EERROR,$)24' -91EFSAHE()
USE TEMP.DBF
ON ERR~mR
gn -errc:VAL(I-aessa; 1
IF gn error '0

DO Pause WITH
*Errer m~ning TEMP.DSFF
gr errorzo
Ic -i~e:'SETgtcpro.-ws
DUti &c file.
RETURN

END IF
Ic new='Y'
RELEASE Icjmessage
IF .NOT. glibatch

DO BefAct
ENDIF
SET MESSASE TO
$-- Desc: Report
SET PRINT ON

78

REPORT FORM LOG REPC PLAIN N:EZE:T
SET PRINT OFF
IF .NOT. gibatch

DO A~tA~t
END IF

~NDCASE
SET MESSAGE TO
IF gcjquit:'O*
IF LEFT(entryflg,l) P

DEACTIVATE MENU
ELSE

DEACTIVATE POPUP && LOG
ENDIF

ENDIF
IF Ic newr'Y'
Ic i1e='SETD +gr..progrut
DO &lc file,

ENDIF
IF Ic dbf='Y' .AND. .NOT. It new:'Y'
Ic -ile='DBF'+gc-Drognuz
DO &Ic file.

ENDIF

ENDIF

RETURN

I Prograx ... OUAL.ORS
t Author "tis is an AFPLICATION OE2ECT.
I Date 3109
1 Ncti~e: Type :nfortat~ov here or greetings to YC~r u.sers.
I dBASE Ver .. See An!izat.or fen tol L:. a.: si c tanr.
I Gene-ated by.: APEN vers:cn 1,3
2 Des~r:pticn. Q'a! PC' for user a;1::at10n for C:Ye 10".

t hescribtior..: Menu actons

PROCEDURE GUAL
PARAMETER entryfbl'
PRIVATE grvprognut
gc~prognuW4'

DO SET04
IF gn-error) 0

gn -error=O
RETURN

ENDIF

t-- Before senc code

79

ACTIVATE POPUP OUAL

I-- After ment

RETURN
I-- EOP OUAL

PROCEDURE SETO4
ON KEY LABEL F1 D lIHELFI

DO DBF04 && open menu level database

IF gn error 0
IF gl color .AND. .NOT. SET('WATTRIEUTE') +! ,Pd+/IB,N!N '+;

CHR(38)+CHR(38)+- W+/N,NB,RG'/S?,B!W,N!6P'

SET COLOR OF NORMAL TO W+!B

SET COLOR OF MESSAGES TO W+IN
SET COLOR OF TITLES TO M/B
SET COLOR OF HIGHLIGHT T2 RP+/G?

SET COLOR CF BOX TO RS+!GE
SET COLOR OF INFORMATION TO BIN
SET COLOR OF FIEL£D TO N/B?

END IF
ENDIF
RETURN'

PRnCEDLRE DEF04
CLOSE DATABASES
t-- Open menu level vieh/datatase
!cuessagez'lO
ON ERROR Icueesae=LTRI(STR(ERRORl))W ,+MES5ASEt)

USE DIVER.DBF
ON ERROR
gn error=VAL(Ic messaQe;

IF Qn.error > 0
Do Pause WITH
'Error cpeninq DIVER.DEF =

Ic rew='Y'
RETURN

ENDIF
lcnew'Y'
RELEASE Ic message
RETURN

PROCEDURE ACT04
I-- Begin OUAL: POPUF Menu Actions.
I-- (before item, action, and after itez)
I
11111111111t
PARAMETER BATON

IF ,NOT. BATON='SODD'
DO VIOLATIO

ELSE
80

PRIYAIE Ic -new, Icijbf
Ic new:'
Ic dbf:'
DO CASE
CASE BAR() =
IF .NOT. gq~batch

DO BefAct
END IF
SET SCOREBOARD ON
SET MESSAGE TO

DO QUALLIST.PR6 WITH 'GOOD'

SET SCOREBOARD OFF
IF .NOT. 91lbatch

DO AftAct
ENDIF

CASE BARI) = 2
I-- Open Iter level view/database and indexes
CLOSE DATABASES
ic dbl:'Y'
Icyassage=V
ON ERROR Ic message:L RIM(STRtERROR0))4'~ '+MESESEt)
USE TEMP5.DBF
ON ERROF
gn -error:VAL, Ic -essa;e)
IF gn-error > 0

DO Pause WITH
'Error openin; TEMP.'&1-
gn -error=O
Ic faie:"SE'-tcr~~~
DO 111c f:1e,
;ETURs

ENKIF
Ic new:'Y'
RELEASE Icumessa~e
IF .NOT. gl batch

DO BefAct
END IF
SET MESSAGE TO
$-- Desc: Report
SET PRINT ON
REPORT FOR4 OUALRPT PLAIN NDEJECT
SET PRINT OFF
IF .NOT. g) batch

DO AftAct
ENDIF

ENDCASE

SET MESSAGE TO
IF gc_qult='D"
IF LEFT(entryfig,!) =B'

DEACTIVATE MENU
ELSE

DEACIIVATE POPUP &t DUAL
ENDIF

ENDIF
IF Ic new='Y'

Ic..ile='SET'+;c_proQnup
DO &I file.

ENDIF
IF Ic .dbf='Y' AND, ,NDT. Ic new='Y'

lc file='DBF'+gcprognus
DO &lc file.

ENDIF
$151151

ENDIF
$:stisss:
RETURN

I Prograa : EXIT.PRG
$ Author : This is an ArPLICATION DBJECT.
I Date 8-04-91
t Notice : Type infortatien here or greetings to your users.
$ dBASE Ver: See Amplication aenu to use as sign-on banner.
I Senerated by.: APSEN versicn 1.3
$ Description..:

I Descrrption..: Menu act:ons

PROCEDURE EXIT
PARAMETER entryflg
PRIVATE gcvrognum
gcprognu2='05'

DO SET05
IF gn error > 0

gn..error=O
RETURN

ENDIF

I-- Before menu code

ACTIVATE POPUP EX!T

I-- After menu

RETURN

I-- EOP EXIT

82

PROCEDURE SET05

ON KEY LABEL Fl DO lHELPI

DO DBF05 && open *enu level database

IF gn .error = 0
IF glcolor ,AND. ,NOT. SE1(A1TRIBTE') = M/S,Ri3/EDNN +;

CHR(3e)+CHR,38)+' W+/N,W/B,RG!6B,B's,N!3B'
SET COLOR OF NORMAL TO W+/B
SET COLOR OF MESSAGES TO W4/N
SET COLOR OF TITLES TO W!?
SET COLOR OF HIGHLIGHT T[RG+/G
SET COLOR OF BOX TO RS+/G?
SET COLOR OF INFORMATION TO B/W

SET COLEF OF FIELDS TO NiB1
ENDiF

ENDIF
RETURN

PROCEDURE DEF05

CLOSE DATABASES
I-- Open menu level vies1database
Ic -essage='0"
ON ERROR Ic message:LTRIM(STR(ERR3R(1)4' ,+AESS= 1c

USE DIVE.DF
ON ERROR
gnjerror=VAL(Ic..uessage)
IF gn-error > 0

DO Pause WITH
'Error openin, DIVE.DPF'
Ic new='Y'
RETURN

ENDIF
lcnew:'Y'
RELEASE ic message
RETURN

PROCEDURE ACTO

I-- Begin EXIIT: POPUP Menu Actions.
I-- (before item, action, and after 'tes)

PRIVATE Inew, Icdb1
lc neh='
ic.dbi="

RUN pkzip adIdata -m -sIRAI I.dbf

DO CASE
CASE BAR()= I

I-- Return to caller
gcquit 'G'
IF LEFT(entryfIg,!) 0) 'B'

83

DEACTIVATE POPUP && EXIT
ELSE

DEACT: ;TE MENU
END!r
RETURN

ENDCASE
SET MESSAGE TO
IF gcquit='Q'
IF LEFT(entryflg,l) 46

DEACTIVATE MENU
ELSE

DEACTIVATE POPUP && EX!T
ENDIF

ENDIF
IF Ic new='Y'
Ic ile='SET'+gc.prognuP
DO &lc file.

ENDIF
RETURN

I-- Name : DIVEFORr,.MT
I-- Date :8-04-9!
$-- Version: dBASE IV, format 1.!
t-- Notes Format files use " as deliiites

t-- Format file initialization code --

$-- Some of these PRIVATE variables are createi based on Code~en and nay not
I-- be used by your particular let file
PRIVATE 1t talk, Ic cursor, Icdisplay, Ic status, I:carry, lcjroc,;

1nrtypeahd, gcrut

IF SET('TALK') ='ON'
SET TALK OFF
It talk = *ON'

ELSE
It talk = 'OFF'

ENDIF
Ic cursor = SET('CUFSOR')
SET CURSOR ON

I status = SETW'STATUS')
t-- SET STATUS was ON when you went into the Forms Designer.
IF It status = 'OFF'

SET STATUS ON

ENDIF
84

t-- I SAY SETS Processing, - .. --------

t-- Format Paze: 1
@ 0,3 TO 6,56 DOUBLE
@ 2,6 SAY 'Dive data entry form'
1 4,6 SAY 'fill in the following data concerning your dive'
1 87 TO 19,50
0 9,8 SAY 'diver I.D. number (SSN):'
@ 9,38 SET Diver num PICTURE '999-99-9999'
@ 10,8 SAY 'date of dive:'

10,38 BET Date
0 11,8 SAY 'serial (nth dive of the day):b
0 11,38 GET Serial PICTURE '9
0 12,8 SAY 'day or night:'
12,38 SET h:te day PICTURE 'XXXXX'

0 12,44 SAY 'dive'

0 13,e SAY 'fresh or salt:'
t 1!,!8 GET Fresh-salt P!CTURE 'XXXXX"
0 13,44 SAY 'water'
S14, SAY 'water temerature:'
f 14,38 GET Tetperatur PICTURE '991
0 14,41 SAY 'degrees F'
0 im,8 SAY 'maximum deth of dive:'

0 15,38 GET Depth PICTURE '994
0 15,42 SAY 'feet'

16,8 SAY 'average ulw visibility:'
0 16,38 BET Visibility PICTURE '999'
0 16,42 SAY 'feet'
@ 17,8 SAY 'amount of air consute:'
0 17,38 SET Air-use! FICTURE '15999'
0 !7,43 SAY 'psi'
0 18,B SAY 'total dive tite:'
0 IR,S BET ttie PITURE '9.
0 12,42 SAY 'hours'
READ

I-- Fortat Page: 2

0 0,2 SAY 'Does the site you dived at have a system site number? (che:k on current site'
@1,4 SAY 'printcut) If it dces, enter it here:'
* 1,42 BET Site num PICTURE '99'
01.47 SAY 'If not, describe tte site in the'
@ ! SAY 'next data field, dive remarks.'
@ 4,2 SAY 'dive remarks:'
0 5,9 BET Dive rils PICTURE 'IS68
XXXIXxxxxx IXXXXXXXXXXXXXXXXXxx XXXXXXXXXXXXXXXXXXXX
IXXIX XXXXXXXXXXXIXXXXXXXXXXXXIXXIXXYXXXXX
XIXIXXIXIX XXXXXXXXIIIxxxxxxx XXXXXXXXXX'
@ 6,9 SET Dive rms PICIURE 'S68
IXXXXIIXxXXXXxXXxxXXX IXXX XXXX XIXXXXXxx fl
IXXXXXXXXXXYXXXXXXXXxxxxxxxxxxXXXXXXXXXXxxXXXXXXXXXXX

85

xxxxxxxxxxxxxxxxxxxxxXXXYXXYXXXXXIXXXXXYXXYIX'IXYxx
*17,9 BET Dive rats PICTURE 'HASB
xxxxxxxxxxIxIxIxxxxxxXXXXXXXXXXXXXXXXXX)XXIXY1IIxxfl
lxxxxxIxxxxxxxyxxxxxxxIxxxIfxxIIxxUIIxxxxXXXXXXIIXX
xxIxxxxxxxxxxIXXXixxxxxxxxxxIXXXIxxxxiIxxxXXXXXUIIU'
I-- Forsat file exitl code ------ ------------ -------- -

I-- SET STATLIS was ON when You went intc the Fo-as Desizier,
IF Ic statu = 'OFF" H Erntere fcrt with statds of!

SET STATUS OFF t& 7urp STATUS 'OFF' on thE way out
ENDIF

? SET CURSOR 11: cursor.
SET TALK lc-talk.

RELEASE lc-talk,Icfields,IrstatLS
I-- EDP; DIVEFORM.FMT

I dBASE IV .PRC file
t V301N1,PRE (joins dive.dbi w~t.1 dive-.dbf and site.dbi and stores to teep.dbf
I for one diver, fields are set for a dive log.)
t11111111tt

PARAMETER BATON
ON ERROR CANCEL
IF .NOT. BATON = "603V
DO VIOLATIO

ELSE
tSitllsitisit

ACCEPT 'Enter the diver nuatpr of the diver whos 1c; you wish to : ;

to ndater

SET FIELDS TO
SELECT I
USE DIVE.DBF AGAIN NOUPDATE
USE DIVER.DBF AGAIN NCUPDATE :N 2 ORDER DIVER NUM
USE SITE.DBF AGAIN NOUPDATE IN 3 ORDIEF. SITE NJM
SET EXACT ON
SET FILTER TO ((A-)DIVER-NJM~nusber)I .AND. FOUND(2) ,ANt-. FOUIND!;
3)
SET RELATION TO A->DIVER NUM INTO B
SELECT 2
SET RELAIION TC A->EITE NUM I NTO C
SELECT I
SET SKIP TO B,C
60 TOP
SET FIELDS TO A->DATE, A->SERIA., A-)SITE NMA>IVRNMA
>FRESH SALTi
,AQ>NITEDAY,A-)TEIFERATU.,A-)DEPTH, A>VIS!BILITY ,A->AIR-U-EDA-)TINE;

86

-pineno=0 &&set lines te zero
$-- NUEJECT parameter
IF ql-noeje,-t

IF _jeJect=BEFURE'
jert=1N0NE'

ENDIF
IF 3eet='BTHO

jei'ect='AFTER'
END1IF

ENDIF

I~- Set-up environment
ON ESCAPE DO Prnabort-
IF SETTALYI)t'041

SET TALK OFF
gc -talWk'ON"

EL6SE
gc -talk='OFF3

ENDIF
gc space:SE7 (SPACE' l
SE; qPACE OFF
grj- ise=TIME() R system time for predefined field
gd -date=DATE() H system date a r a
g1l-andl:,F. && first and last Page fla;
gljrntfl;:.T, I& Continue printing flag
91l-widow=.T. It flag for checiing widow bands
gnlenqth:LEN(qcheadinq) && store length o1 the READING
gnjevel=2 ~¤t bard being processed
gnjaqe:Jagqeno & grab current page nuater
qnjpspace=_pspacing I& get current print spacing

I~- Set up prccedre fo- page brEak
gn atlne:D-length - (jpcn t' I
ON PAGE AT LINE on atline EJECT PAGE

I~- Print Report

PRINTJU

t-- initialize summary variables.
rissum 1:0

IF 9gplain
ON PAGE AT LINE gn-atline DI. Pgolain

ELSE
ON PAGE AT LINE gn atline DO Pqfoot

ENDIF

DO Pghead

gl-and:,T. I& first physical page started

88

,A->DIVERS,-FNAMEE->M ,B->LNPYE,C->TYPEC-'NAME
SET FIELDS ON
SET SAFETY OFF
ERASE TEMP.DBF
COPY TO TEMP.DBF

SET SAFETY ON

return

I Progras... : :\LCS.RE.RG
I Date : 21-04-91
$ Versions: dBAEE IV, Report 1.1
I
I Notes:
S ------
I Prior to runnin; this procedure with the DO cottaid
I it is necessary use LOCATE because the CONTINUE
I statetent is in the main loop.
I

I-- Parameters
PRAMETERS gl noeject, glplain, g1sue~ary. gcteadiig, ;:_extra
It The first three parameters are of tyoe Logical.
It The fourth parameter is a string, The fifth is extra.
PRIVATE e.ect, wraD

I-- Test for no records found
IF EOF() .CR. .NOT. FCJN)

RETURN
ENIF

t-- turn word wrap mode off
wrap=,F.

IF .plength < (jspacirz 1 6 1 1) + (jspacing + 1) + 2
SET DEVICE TO SCREEN
DEFIINE WINDOW gw renort FRO4 7,17 TO 11,62 DOUBLE
ACTIVATE WINDOW gwrepert
@ 0.1 SAY 'Increase the page length for this report.'

@ 2,1 SAY 'Press any key ... '
xzINKEY(0)
DEACTIVATE WINDOW gwrepcrt
RELEASE WINDOW gwreport
RETURN

ENDIF

B7

DO Rintro

$-- File Loop
DO WHILE FOUND(O .AND..NT. EDF() .AN. .grntfl

gnlevel=O
t-- Detail lines
IF ;I .suuary

DO Up!_Yars
ELSE

DO _Detail
ENDIF
;lwidow=.T. && erable wvdcw che:tin;
CONIINUE

ENDDO

IF gljrntflg
DO Rsues
IF jiineno (= gn -atline

EJECT PAGE
ENDIW

ELSE
DO Rsumst
DO Reset
RETURN

ENDIF

ON PAGE

ENDPRINTJOB

DO Reset
RETURN
I EOP: B:\LC5 REF.FR

I-- Update summary fields anc'or calculated fields.
PROCEDURE Up Yart
I-- Sue
rmasutlzr-sue1+TIME
RETURN
I EOP: UpdVars

t-- Set flag to get out of DO WHILE liop when es:ape is pressed.
PROCEDURE Prnabcrt
gljrntflg=.F.
RETURN
I EOP: Prnabort

PROCEDURE Pghead

?? IIF(gIplain," , 'Page No.') AT 0,;
IlF(q..plain,",_jageno) PICTURE '999' AT 9,t
'Dive lo; for' AT 22,;

89

Fnate FUNCTION 'T- AT 3,;
ni FUNCTION 'T' AT 49,i
Lname FUNCTION 'T' AT 51

$-- Print HEADINS paraceter le. REPHRT FOFR (nare' HEAr!N6 (expC[
IF .NOT. gl olain .AND. ren;th 0

?? gcheading FUNCTIDN 'I'+'' ITR , a

ENDIF
IF ,NOT. ;lplair

" ;d date AT 0

ENDIF

I 'Date' AT 0,;
'Site name or Iccat:on' AT 9,;

'Air' AT 40,;
'Water' AT 49,;
'Max' AT 60,;
'Visibility' AT 66,;
'Time' AT 77

?? 'Serial' AT 0,;
'used' A' iC,;

'temp" AT 49,;
'depth' AT 60

RETURN

SEOP: Pghead

PROCEDURE R.ntrc

RETURN
I EOP: Rintrc

PROCEDURE _Deta:l
IF : I gn_pspace < ;nat Wre - _psac'r; 1 6 1)
IF -1 widow .AND, plienct: I gnpspace ;ratine +I

EJECT PAGE
ENDIF

ENDIF
DO Upd..Vars
?? Date AT 0,;
Name FUNCTION 'TV30' AT 9,;
Air used PICTURE '99999959' AT 40,;
Temperatur PICTURE '9999999999' AT 49,;
Depth PICTURE '9999?' AT 60,;
Visibility PICTURE '9999999999' AT 66,;
Time PICTURE '999,9' AT 77

? Fresh-salt FUNCTION 'T' PICTURE 'XXXXXXXXXX' AT 9,;

90

'Water,' AT 20,;
Nite day FUNCTION 'T' PITURE 'XXXXXXXX' 4T 27,;
'Dive' AT 36

?? Serial PICTURE '9999P9' AT 0,;
Dive-rots FUNCTION 'TV3O' AT 9

9

RETURN
I EOP: __Detail

PROCEDURE Rsumm
?? 'Total time:' AT 62,;
r asual PICTURE '999,9' AT 77
9q.andl:.F. && last pace finlshed

RETURN
I EOP: Rsumm

PROCEDURE Pqfcot
PRIVATE -box, Jspa:lng
gl idow=.F. && disable widow checkir;
_pspa:ing:l
9

IF .NOT. iplain
ENDIF
EJECT PACE
I-- is the page nusber greater tha- the fidin) pace
IF jageno > _Depage

SOTO BDTTOC
SH!P

;nlevel:
ENDIF
IF .NOT. gi!lain .AND. -Ilfand,

jspacingz:n.spa:e
DO Pghead

ENDIF
RETURN
S EOP: Pgfoct

I-- Process page break when FLAIN option is used.
PROCEDURE Pgplain
PRIVATE box
EJECT PAGE
RETURN

I EOP: Pgplain

I-- Reset dBASE environment prior to calling report
PROCEDURE Reset
SET SPAE &-c spa:e.
SET TALK 1gc tak.
ON ESCAPE
ON PAGE

91

RETURN
$ EOP: Reset

I dBASE IV .QBE file
$ OUALLIST.PRG (joins diver.dbf with qual.dbf and stores tc temp,.dbf
t for one diver, fields are set for a cialification listing.!
1100i1111

PARAMETER BATON
ON ERROR CANCEL
IF .NOT. BATONW'BOOD'
DO VIOLATIO

ELSE
$$1sIl$11111I
ACCEPT 'Enter the diver nutber cf the diver whcs ual list you wish to find: =;
to number

SET FIELDS TO
SELECT I
USE DIVER.DBF ASAIN NDUPDATE
USE QUAL.DBF ASAIN NOJPDATE !N 2 ORDER DIVER NUM
SET EXACT ON
SET FILTER TO ((A->DIVERNLMnamber)) .AN1, FOUNDt2)
SET RELATION TJ A->DIVERNUM INTO F
SET SKIP TO B
60 TOP
SET FIELDS TO A-)FNAMEA-K I,A-LNAMEB-OUAL.NAIEF-C'PDMANY,B-
>DATE,P;
->INSTRUCTOR,A->DIVER-NUM
SET FIELDS ON
SET SAFETY OFF
ERASE TEWP5.DBF
COPY TO TEMF.DEF
SET SAFETY ON
sI 5ll2iti2ll
ENDIF
$11UI11ti
return

t Program B:\OUALRPT.FR6

I Date B-04-91
1 Versions dBASE IV, Report 1.1

I
I Notes:

92

S Prior to running this procedure with th e DO coazand
I it is necessary use LOCATE because the CONTINUE
I statement is in the eain loop.

I-- Parameters
PARAMETERS gl.noeject, g9i.lain, gl-summary, gc heading, gc-extra
It The first three parameters are of type Logical.
$I The fourth parameter is a string. The fifth is extra.
PRIVATE .peject, _wrap

$-- Test for no records found
IF EOF0) OR, .NOT. FOUND()

RETURN
ENDIF

t-- turn word wrap mode off
wrap:.F.

IF .jlength < (jspacing $ 6 + 1) + .pspac:ng + 1) + 2
SET DEVICE TO SCREEN
DEFINE WINDOW gw report FROM 7,17 TO 11,L2 DOUFLE
ACTIVATE WINDOW gw-report
I (,l ISAY 'Innrease the page length for this report.'
12,1 SAY 'Press any key ,,,'
x=INKEY(O)
DEACTIVATE WINDOW gw report
RELEASE WINDOW gw-report
RETURN

ENDI;

pliteno:O && set lines to zero
I-- NOEJECT paramete,
IF gl-noeie:t
IF .peject=aiEFORE'

.pplectz'NIE'
ENDIF
IF -peec= .CTH'

_peject'AFTER'
END F

ENDIF

I-- Set-up envyrontert
ON ESCAPE DO Prnabcrt
IF SET('TALK'):'ON'

SET TALK OFF
gc talk=ON'

ELSE
gc talk='OFF"

ENDIF
gcjspace=SET('SFA:E')
SET SPACE OFF
gc.tme=TINE() && system time for predeflned f~eId

93

gd date=DATE() && systes date . . .
glfandl=.F && first and last page flag
lprntflg=.T, & Continue printing flag

gl..widow=.T. && flag for checking widow bands
gn..length=LEN(gc-heading) && store length of the HEADING
gnjlevel=2 && current bard being processed
gnjage:.pigeno && grab current page number
gnjpspace=_pspacing & get current print spa:ing

I-- Set up procedure for page break
gn atline:Jlength - (jspacing 4 1)
ON PAGE AT LINE gnatline EJECT PAGE

I-- Print Report

PRINTJOB

IF glplair
ON PAGE AT LINE gnatlinE DO Pgplair

ELSE
ON PAGE AT LINE gnatline DO Pgfoot

ENDIF

DO Pghead

glfandlz.T. & first physical page started

I-- Fi' Loop
DO WHILE FOUND() ,AND. ,NOT. EOF() ,AND. g:.prntllg

gn_level:O
I-- Detail lines
IF gl9suemary

DO Updyars
ELSE

DO __Detail
ENDIF
glwadow:.T. && enable widow checking
CONTINUE

ENDDD

IF gl.prntflg
DO Rsutm
IF plineno (z gnatine

EJECT PAGE
ENDIF

ELSE
DO Rsumm
DO Reset
RETURN

ENDIF

ON PAGE
'4

ENDPRINTJOB

DO Reset
RETURN
I EDP: 9:\OUALRPT.FRB

I-- Update summary fields and/or calculated fields.
PROCEDURE Upd.Vars
RETURN
I EOP: UpdVars

I-- Set flag to get out vi DO WHILE loop wnen esca;e is pressed.
PROCEDURE Prnabort
gl.prntflg=.F.
RETURN
I EOP: Prnabort

PROCEDURE Pghead
9

? IIF(gl_plain, , 'Page No. ' PT (A ;
IIF(gljlain,",_pageno) PICTJRE '999' AT 9,;
'Dual list for:' AT 21

7

t-- Print HEADINE parareter ie. REPORT FORM (naIe HEAD!NE /exoC'
IF ,NOT. gljlain .AND. gnrength) 0

?I gc-heading FUNCTION 'I;'+LTRIM(STR(-rargr-l_,ar .)

ENDIF
17 IlF(ql_plain,-,gddate) AT 0,;
Fnise FUNCTION "T' AT !8,;
Mi FUNCTION 'T' AT 31,;
Lname FUNCT.ON 'T' AT 34

9

9

G 'GUAL .NAME' AT 5.;
'COMPANY' AT 17,:
'DATE' AT 29,;
aINSTRUCTOR' AT 39

RETURN
I EOF: Pghead

PROCEDURE __Detail
IF gnjspace < gn atline - (jspacing $ 6 + 1
IF gl widow .AND. .o:nen;+gnpspace) gnatline + I

EJECT PAGE
ENDIF

ENDIF
DO UpdVars

95

?? gualnaee FUNCTION IT* AT 5,;
Company FUNCTION 'T" AT 17,z
Date AT 29,;
Instructor FUNCTION ' AT 39
?

RETURN
I EOP: ._etail

PROCEDURE Rsume
gljfandl:.F. H& last page finished
?

RETURN
I EOP: Rsuem

PROCEDURE Pgfoot
PRIVATE box, jspacing
lwidow=.F. && disable widow che:king

.pspacing:I

.7

IF .NOT. gl_plain
ENDIF
EJECT PAGE
$-- is the page number greater than the ending page
IF jageno > pepage

S0l0 BOTTOM
SKIP
gnlevel:O

ENDIF
IF .NOT. glpain .AND. g]-fardl

_pspacng=gnpspace
DO Pghead

ENDIF
RETURN
I EOP: Pgfoot

$-- Process page break when PLAIN option is used.
PROCEDURE Pgpla:n

PRIVATE box
EJECT PA6E
RETURN
3 EOP: Pgplain

t-- vaset dBASE environment prior to calling report
PROCLIURE Reset
SET SPACE Igcspace.
SET TALK 1g9ctalk.
ON ESCAPE
N PAGE

RETURN
I EOP: Reset

96

LIST OF REFERENCES

Murray, W., "Security Considerations for Personal
Computers," IBM Systems Journal, pg.27, v.23, no.3, 1984.

Stephenson, P., "Personal and Private," Byte, pg.286, June
1989.

Brown, B., "The Small Data Center," Byte, pg.286, June 1989.

Pfleeger, C., Security in Computing, Prentice-Hall, Inc.,
1989.

Giladi, R. and Zviran, M., Centralizing the Data,
Distributing the Processing, Working Paper No. 89-02, Naval
Postgraduate School, January 1989.

National Computer Security Center, Personal Computer
Security Considerations, NCSC Pub WA-002-85, 1985.

National Telecommunications and Information Systems Security
Commitee, Office Automation Security Guide, NTISS COMPUSEC I
1-87, 1987.

Post, G. and Kievit, K., "Accessibility vs. Security: A Look
at the Demand for Computer Security," Computers and
Security, Vol. 10, No. 4, June 1991,Elsevier Science
Publishers B. V.

Gogan, J., "Should PCs Be Personally Allocated?", Journal of
Management Information Systems, Spring 1991, Vol. 7, No. 4,
1991.

Tanenbaum, A., Operating Systems: Design and Implementation,
pp.4-5, Prentice-Hall, Inc., 1987.

Tanenbaum, A., Structured Computer Organizaticn, Prentice-
Hall, Inc., 1990.

Zarger, C., "Is Your PC Secure?" Mechanical Engineering, pg.
57, March 1988.

Mensching, J. and Adams, D., Managing an Inform3tion System,
Prentice Hall, Inc., 1991.

97
q

BIBLIOGRAPHY

Awad, E., Management Information Systems, Benjamin Cummings,
Tnc., 1988.

Bakst, S., "Beware of Potholes on the Path to PC Security,"
The Lffice, June 1990.

Boebert, W., Kain, R. and Young, W., "Secure Computing: The
Secure Ada Target Approach," Scientific Honeyweller, July
1985.

Brown, B., "The Small Data Center," Byte, pg.286, June 1989.

Chorley, B. and Price, W., "An Intelligent Token For Secure
Transactions," Security and Protection in Information
Systems, Elsevier Science Publishers B. V., 1989.

U. S. Dept. of Defense, Trusted Computing Sys. Evaluation
Criteria, DOD 5200.28STD, Dec 85.

Giladi, R. and Zviran, M., Centralizing the Data,
Distributing the Processing, Working Paper No. 89-02, Naval
Postgraduate School, January 989.

Gogan, J., "Should PCs Be Personally Allocated?", Journal of
Management Information Systems, Spring 1991, Vol. 7, No. 4,
1991.

Mehrmann, L. and Amery, C., "Security Practices for
Information Systems Networks," Security and Protection in
Information Systeit3, Elsevier Science Publlshers B. V.,
1989.

Mensching, J. and Adams, D., Managing an Information System,
Prentice Hall, Inc., 1991.

Murray, W., "Security Considerations for Personal
Computers," IBM Systems Journal, v.23, no.3, 1984.

Murray, W., "Security in Advanced Applications and
Environments," Security and Protection in Informati
Systems, Elsevier Science Publishers B. V., 1989.

National Computer Security Center, Personal Computer
Security Considerations, NCSC Pub WA-002-85, 1985.

98

Pfleeger, C., Security in Computing, Prentice-Hall, Inc.,
1989.

Post, G. and Kievit, K. *'Accessibility vs. Security: A Look
at the Demand for Computer Security," Computers and
Security, Vol. 10, No. 4, June 1991, Elsevier Science
Publishers B. V.

Schultz, J., "Low Cost Security for Personal Computers,"
Signal, November 1969.

Stepnenson, P., "Personal and Private," Byte, June 1989.

Summers, R., "An Overview of Computer Security," IBM Systems
Journal, v.23, no.4, 1984.

Tanenbaum, A., Operating Systems:Design and Implementation,
Prentice-Hall, Inc., 1987.

Tanenbaum, A., Structured Computer Organization, Prentice-
Hall, Inc., 1990.

Walker, S., "Network Security Overview", paper presented at
the 1985 Symposium on Security and Privacy, 1985.

Zarger, C., "Is Your PC Secure?" Mechanical Engineering, pg.
57, March 1988.

99

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Prof. Moshe Zviran, Code AS/ZV
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. Wil1 4am J. Haga, Code AS/HG
Naval Postgraduate School
Monterey, California 93943-5000

100

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Prof. Moshe Zviran, Code AS/ZV 1
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. WiA1 4.am J. Haga, Code AS/HG 1
Naval Postgraduate School
Monterey, California 93943-5000

100

